Ray-tracing for complex astrophysical high-opacity structures
BACMANN, A.
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
BACMANN, A.
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
< Réduire
Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
Observatoire aquitain des sciences de l'univers [OASU]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Langue
en
Article de revue
Ce document a été publié dans
The Astrophysical Journal. 2006, vol. 645, n° 2 Part 1, p. 920-927
American Astronomical Society
Résumé en anglais
We present a ray-tracing technique for radiative transfer modeling of complex three-dimensional (3D) structures which include dense regions of high optical depth like in dense molecular clouds, circumstellar disks, envelopes ...Lire la suite >
We present a ray-tracing technique for radiative transfer modeling of complex three-dimensional (3D) structures which include dense regions of high optical depth like in dense molecular clouds, circumstellar disks, envelopes of evolved stars, and dust tori around active galactic nuclei. The corresponding continuum radiative transfer problem is described and the numerical requirements for inverse 3D density and temperature modeling are defined. We introduce a relative intensity and transform the radiative transfer equation along the rays to solve machine precision problems and to relax strong gradients in the source term. For the optically thick regions where common ray-tracers are forced to perform small trace steps, we give two criteria for making use of a simple approximative solver crossing the optically thick region quickly. Using an example of a density structure with optical depth changes of 6 orders of magnitude and sharp temperature variations, we demonstrate the accuracy of the proposed scheme using a common 5th-order Runge-Kutta ray-tracer with adaptive step size control. In our test case, the gain in computational speed is about a factor of 870. The method is applied to calculate the temperature distribution within a massive molecular cloud core for different boundary conditions for the radiation field.< Réduire
Origine
Importé de halUnités de recherche