Chemistry In Disks VII. First detection of HC3N in protoplanetary disks
Langue
en
Article de revue
Ce document a été publié dans
The Astrophysical Journal. 2012, vol. 756, n° 1, p. 58
American Astronomical Society
Résumé en anglais
Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the ...Lire la suite >
Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the enhanced capabilities of the IRAM 30m telescope by using the new broad band correlator (FTS) to search for so far undetected molecules in the protoplanetary disks surrounding the TTauri stars DM Tau, GO Tau, LkCa 15 and the Herbig Ae star MWC 480. We report the first detection of HC3N at 5 sigma in the GO Tau and MWC 480 disks with the IRAM 30-m, and in the LkCa 15 disk (5 sigma), using the IRAM array, with derived column densities of the order of 10^{12}cm^{-2}. We also obtain stringent upper limits on CCS (N < 1.5 x 10^{12} cm^{-3}). We discuss the observational results by comparing them to column densities derived from existing chemical disk models (computed using the chemical code Nautilus) and based on previous nitrogen and sulfur-bearing molecule observations. The observed column densities of HC3N are typically two orders of magnitude lower than the existing predictions and appear to be lower in the presence of strong UV flux, suggesting that the molecular chemistry is sensitive to the UV penetration through the disk. The CCS upper limits reinforce our model with low elemental abundance of sulfur derived from other sulfur-bearing molecules (CS, H2S and SO).< Réduire
Mots clés en anglais
Solar and Stellar Astrophysics
Astrophysics
Galaxy Astrophysics
Origine
Importé de halUnités de recherche