First detection of cyanamide (NH$_2$CN) towards solar-type protostars
Langue
en
Article de revue
Ce document a été publié dans
Astronomy and Astrophysics - A&A. 2018, vol. 612, p. id.A107
EDP Sciences
Résumé en anglais
Searches for the prebiotically-relevant cyanamide (NH$_2$CN) towards solar-type protostars have not been reported in the literature. We here present the first detection of this species in the warm gas surrounding two ...Lire la suite >
Searches for the prebiotically-relevant cyanamide (NH$_2$CN) towards solar-type protostars have not been reported in the literature. We here present the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PILS) of IRAS 16293-2422 B and observations from the IRAM Plateau de Bure Interferometer of NGC1333 IRAS2A. We furthermore detect the deuterated and $^{13}$C isotopologues of NH$_2$CN towards IRAS 16293-2422 B. This is the first detection of NHDCN in the interstellar medium. Based on a local thermodynamic equilibrium analysis, we find that the deuteration of cyanamide ($\sim$ 1.7%) is similar to that of formamide (NH$_2$CHO), which may suggest that these two molecules share NH$_2$ as a common precursor. The NH$_2$CN/NH$_2$CHO abundance ratio is about 0.2 for IRAS 16293-2422 B and 0.02 for IRAS2A, which is comparable to the range of values found for Sgr B2. We explored the possible formation of NH$_2$CN on grains through the NH$_2$ + CN reaction using the chemical model MAGICKAL. Grain-surface chemistry appears capable of reproducing the gas-phase abundance of NH$_2$CN with the correct choice of physical parameters.< Réduire
Mots clés en anglais
Astrophysics - Solar and Stellar Astrophysics
Astrophysics - Astrophysics of Galaxies
Origine
Importé de halUnités de recherche