ALMA observations of the young protostellar system Barnard 1b: signatures of an incipient hot corino in B1b-S
PETY, J.
Laboratoire de Radioastronomie [LRA]
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA (UMR_8112)]
Laboratoire de Radioastronomie [LRA]
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA (UMR_8112)]
LIS, D. C.
California Institute of Technology [CALTECH]
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA (UMR_8112)]
< Réduire
California Institute of Technology [CALTECH]
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA (UMR_8112)]
Langue
en
Article de revue
Ce document a été publié dans
Astronomy and Astrophysics - A&A. 2018p. Accepted for publication in A&A 2018
EDP Sciences
Résumé en anglais
The Barnard 1b core shows signatures of being at the earliest stages of low-mass star formation, with two extremely young and deeply embedded protostellar objects. Hence, this core is an ideal target to study the structure ...Lire la suite >
The Barnard 1b core shows signatures of being at the earliest stages of low-mass star formation, with two extremely young and deeply embedded protostellar objects. Hence, this core is an ideal target to study the structure and chemistry of the first objects formed in the collapse of prestellar cores. We present ALMA Band 6 spectral line observations at ~0.6'' of angular resolution towards Barnard 1b. We have extracted the spectra towards both protostars, and used a Local Thermodynamic Equilibrium (LTE) model to reproduce the observed line profiles. B1b-S shows rich and complex spectra, with emission from high energy transitions of complex molecules, such as CH3OCOH and CH3CHO, including vibrational level transitions. We have tentatively detected for the first time in this source emission from NH2CN, NH2CHO, CH3CH2OH, CH2OHCHO, CH3CH2OCOH and both aGg' and gGg' conformers of (CH2OH)2. This is the first detection of ethyl formate (CH3CH2OCOH) towards a low-mass star forming region. On the other hand, the spectra of the FHSC candidate B1b-N are free of COMs emission. In order to fit the observed line profiles in B1b-S, we used a source model with two components: an inner hot and compact component (200 K, 0.35'') and an outer and colder one (60 K, 0.6''). The resulting COM abundances in B1b-S range from 1e-13 for NH2CN and NH2CHO, up to 1e-9 for CH3OCOH. Our ALMA Band 6 observations reveal the presence of a compact and hot component in B1b-S, with moderate abundances of complex organics. These results indicate that a hot corino is being formed in this very young Class 0 source.< Réduire
Mots clés en anglais
astrochemistry
ISM: clouds
ISM: individual objects: Barnard 1b
ISM: abundances
stars: formation
stars: low-mass
Astrophysics - Astrophysics of Galaxies
Origine
Importé de halUnités de recherche