Oceanic tides from Earth-like to ocean planets
AUCLAIR-DESROTOUR, P.
Astrophysique Interprétation Modélisation [AIM (UMR7158 / UMR_E_9005 / UM_112)]
ECLIPSE 2018
Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
Astrophysique Interprétation Modélisation [AIM (UMR7158 / UMR_E_9005 / UM_112)]
ECLIPSE 2018
Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
MATHIS, Stéphane
Laboratoire d'études spatiales et d'instrumentation en astrophysique [LESIA (UMR_8109)]
Voir plus >
Laboratoire d'études spatiales et d'instrumentation en astrophysique [LESIA (UMR_8109)]
AUCLAIR-DESROTOUR, P.
Astrophysique Interprétation Modélisation [AIM (UMR7158 / UMR_E_9005 / UM_112)]
ECLIPSE 2018
Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
Astrophysique Interprétation Modélisation [AIM (UMR7158 / UMR_E_9005 / UM_112)]
ECLIPSE 2018
Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
MATHIS, Stéphane
Laboratoire d'études spatiales et d'instrumentation en astrophysique [LESIA (UMR_8109)]
< Réduire
Laboratoire d'études spatiales et d'instrumentation en astrophysique [LESIA (UMR_8109)]
Langue
en
Article de revue
Ce document a été publié dans
Astronomy and Astrophysics - A&A. 2018, vol. 615, p. A23
EDP Sciences
Résumé en anglais
Context. Oceanic tides are a major source of tidal dissipation. They drive the evolution of planetary systems and the rotational dynamics of planets. However, two-dimensional (2D) models commonly used for the Earth cannot ...Lire la suite >
Context. Oceanic tides are a major source of tidal dissipation. They drive the evolution of planetary systems and the rotational dynamics of planets. However, two-dimensional (2D) models commonly used for the Earth cannot be applied to extrasolar telluric planets hosting potentially deep oceans because they ignore the three-dimensional (3D) effects related to the ocean’s vertical structure.Aims. Our goal is to investigate, in a consistant way, the importance of the contribution of internal gravity waves in the oceanic tidal response and to propose a modelling that allows one to treat a wide range of cases from shallow to deep oceans.Methods. A 3D ab initio model is developed to study the dynamics of a global planetary ocean. This model takes into account compressibility, stratification, and sphericity terms, which are usually ignored in 2D approaches. An analytic solution is computed and used to study the dependence of the tidal response on the tidal frequency and on the ocean depth and stratification.Results. In the 2D asymptotic limit, we recover the frequency-resonant behaviour due to surface inertial-gravity waves identified by early studies. As the ocean depth and Brunt–Väisälä frequency increase, the contribution of internal gravity waves grows in importance and the tidal response becomes 3D. In the case of deep oceans, the stable stratification induces resonances that can increase the tidal dissipation rate by several orders of magnitude. It is thus able to significantly affect the evolution time scale of the planetary rotation.< Réduire
Mots clés en anglais
Astrophysics - Earth and Planetary Astrophysics
85-02
hydrodynamics
planet-star interactions
planets and satellites: oceans
planets and satellites: terrestrial planets
Origine
Importé de halUnités de recherche