Simplified numerical approach for incremental sheet metal forming process
Langue
en
Article de revue
Ce document a été publié dans
Engineering Structures. 2014-03-15, vol. 62-63, p. 75-86
Elsevier
Résumé en anglais
The current work presents a finite element approach for numerical simulation of the incremental sheet metal forming (ISF) process, called here ''ISF-SAM'' (for ISF-Simplified Analysis Modelling). The main goal of the study ...Lire la suite >
The current work presents a finite element approach for numerical simulation of the incremental sheet metal forming (ISF) process, called here ''ISF-SAM'' (for ISF-Simplified Analysis Modelling). The main goal of the study is to develop a simplified FE model sufficiently accurate to simulate the ISF process and quite efficient in terms of CPU time. Some assumptions have been adopted regarding the constitutive strains/stresses equations and the tool/sheet contact conditions. A simplified contact procedure was proposed to predict nodes in contact with the tool and to estimate their imposed displacements. A Discrete Kirchhoff Triangle shell element called DKT12, taking into account membrane and bending effects, has been used to mesh the sheet. An elasto-plastic constitutive model with isotropic hardening behaviour and a static scheme have been adopted to solve the nonlinear equilibrium equations. Satisfactory results have been obtained on two applications and a good correlation has been shown compared to experimental and numerical results, and at the same time a reduction of CPU time more than 60% has been observed. The bending phenomenon studied through the second application and the obtained results show the reliability of the DKT12 element.< Réduire
Mots clés en anglais
Incremental sheet forming
Simplified analysis modelling
Shell element DKT12
Origine
Importé de halUnités de recherche