Voiced speech enhancement based on adaptive filtering of selected intrinsic mode functions
Langue
en
Article de revue
Ce document a été publié dans
Advances in Adaptive Data Analysis. 2010-01, vol. 2, n° 1, p. 65-80
Résumé en anglais
In this paper a new method for voiced speech enhancement combining the Empirical Mode Decomposition (EMD) and the Adaptive Center Weighted Average (ACWA) filter is introduced. Noisy signal is decomposed adaptively into ...Lire la suite >
In this paper a new method for voiced speech enhancement combining the Empirical Mode Decomposition (EMD) and the Adaptive Center Weighted Average (ACWA) filter is introduced. Noisy signal is decomposed adaptively into intrinsic oscillatory components called Intrinsic Mode Functions (IMFs). Since voiced speech structure is mostly distributed on both medium and low frequencies, the shorter scale IMFs of the noisy signal are beneath noise, however the longer scale ones are less noisy. Therefore, the main idea of the proposed approach is to only filter the shorter scale IMFs, and to keep the longer scale ones unchanged. In fact, the filtering of longer scale IMFs will introduce distortion rather than reducing noise. The denoising method is applied to several voiced speech signals with different noise levels and the results are compared with wavelet approach, ACWA filter and EMD–ACWA (filtering of all IMFs using ACWA filter). Relying on exhaustive simulations, we show the efficiency of the proposed method for reducing noise and its superiority over other denoising methods, i.e., to improve Signal-to-Noise Ratio (SNR), and to offer better listening quality based on a Perceptual Evaluation of Speech Quality (PESQ). The present study is limited to signals corrupted by additive white Gaussian noise.< Réduire
Mots clés
Voiced speech enhancement
Empirical Mode Decomposition
ACWA filter
Décomposition modale empirique
Signal de parole
Séquence voisée
Origine
Importé de halUnités de recherche