Adapting polytopes dimension for managing degrees of freedom in tolerancing analysis
Langue
en
Communication dans un congrès avec actes
Ce document a été publié dans
14th CIRP Conference on Computer Aided Tolerancing (CAT), 2016-05-18, Gothenburg.
Résumé en anglais
In tolerancing analysis, geometrical or contact specifications can be represented by polytopes. Due to the degrees of invariance of surfaces and that of freedom of joints, these operand polytopes are originally unbounded ...Lire la suite >
In tolerancing analysis, geometrical or contact specifications can be represented by polytopes. Due to the degrees of invariance of surfaces and that of freedom of joints, these operand polytopes are originally unbounded in most of the cases (i.e. polyhedra). Homri et al. proposed the introduction of virtual boundaries (called cap half-spaces) over the unbounded displacements of each polyhedron to turn them into 6-polytopes. This decision was motivated by the complexity that operating on polyhedra in R6 supposes. However, that strategy has to face the multiplication of the number of cap half-spaces during the computation of Minkowski sums. In general, the time for computing cap facets is greater than for computing facets representing real limits of bounded displacements. In order to deal with that, this paper proposes the use of the theory of screws to determine the set of displacements that defines the positioning of one surface in relation to another. This set of displacements defines the subspace of R6 in which the polytopes of the respective surfaces have to be projected and operated to avoid calculating facets and vertices along the directions of unbounded displacements. With this new strategy it is possible to decrease the complexity of the Minkowski sums by reducing the dimension of the operands and consequently reducing the computation time. An example illustrates the method and shows the time reduction during the computations.< Réduire
Mots clés en anglais
Tolerance analysis
Set of constraints
Polytopes
Minkowski sum
Screws
Origine
Importé de halUnités de recherche