Numerical simulation of metal forming processes with 3D adaptive Remeshing strategy based on a posteriori error estimation
Langue
en
Article de revue
Ce document a été publié dans
International Journal of Material Forming. 2019, vol. 12, n° 3, p. 411–428
Springer Verlag
Résumé en anglais
In this work, a fully automated adaptive remeshing strategy, based on a tetrahedral element for 3D metal forming processes, was proposed in order to solve problems associated with the severe mesh distortion that occurs ...Lire la suite >
In this work, a fully automated adaptive remeshing strategy, based on a tetrahedral element for 3D metal forming processes, was proposed in order to solve problems associated with the severe mesh distortion that occurs during the computation. The main idea is to use the h-type adaptive mesh in combination with an a-posteriori error estimator measured (by the energy norm) on each finite elements to locally control the mesh modification-as-needed. Once a new mesh is generated, all history-dependent variables must be carefully transferred between subsequent meshes. Therefore, several transfer techniques are described and compared. A special attention is given to restore the local mechanical equilibrium of the system with a new methodology. After presenting the necessary adaptive remeshing steps, some 3D analytic and numerical results using the proposed adaptive strategy are given to demonstrate the capabilities of the proposed equilibrated approach and to illustrate some practical characteristics of our remeshing process.< Réduire
Mots clés en anglais
A-posteriori error estimator
3D metal forming processes
Transfer techniques
Equilibrated process
Automatic adaptive remeshing
Origine
Importé de halUnités de recherche