Simulation of continuum electrical conduction and Joule heating using DEM domains
CONTINUUM ELECTRICAL CONDUCTION IN DEM DOMAINS
HUBERT, Cédric
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
DUBAR, Laurent
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Voir plus >
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
HUBERT, Cédric
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
DUBAR, Laurent
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
< Réduire
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Langue
en
Article de revue
Ce document a été publié dans
International Journal for Numerical Methods in Engineering. 2016-10-19, vol. 110, n° 9, p. 862-877
Wiley
Résumé
This paper proposes an original method to simulate the electrical conduction in continuums with the Discrete Element Method (DEM). The proposed method is based on the graphs theory applied to electrical resistance network, ...Lire la suite >
This paper proposes an original method to simulate the electrical conduction in continuums with the Discrete Element Method (DEM). The proposed method is based on the graphs theory applied to electrical resistance network, where the resistance between two discrete elements is estimated through the notion of ‘transmission surface’ to assume the discrete domain as a continuous medium. In addition to the electrical conduction, the Joule heating of a DEM domain has also been developed to take full advantage of the electrical conduction.The proposed method has been implemented in the free DEM software named ‘GranOO’. The numerical results were compared against analytical approaches when applicable, or against Finite Element Method if the geometries become more complex or in case of dynamic loadings. The results are found satisfactory with errors around 3% for the electrical conduction and Joule heating of reasonably complex domains and loading cases. When it comes to more complex domains, such as electrical constriction,whilst the results remain close to those obtained with reference solutions (around 6%), they highlight the importance of taking care about the domains discretization.Finally, the proposed method is applied to detect cracks onset on a cylindrical rod torsion test to show how to take advantage of the proposed work.< Réduire
Mots clés
joule heating
discrete element method
electrical conduction
Origine
Importé de halUnités de recherche