Influence of muscle-tendon complex geometrical parameters on modeling passive stretch behavior with the Discrete Element Method
ROUX, Anthony
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique [CERFACS]
Institut de Biomecanique Humaine Georges Charpak
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique [CERFACS]
Institut de Biomecanique Humaine Georges Charpak
LAPORTE, Sébastien
Institut de Biomecanique Humaine Georges Charpak
Laboratoire de biomécanique [LBM]
Arts et Métiers ParisTech
Institut de Biomecanique Humaine Georges Charpak
Laboratoire de biomécanique [LBM]
Arts et Métiers ParisTech
LECOMPTE, Jennyfer
Laboratoire de biomécanique [LBM]
Institut de Biomecanique Humaine Georges Charpak
Voir plus >
Laboratoire de biomécanique [LBM]
Institut de Biomecanique Humaine Georges Charpak
ROUX, Anthony
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique [CERFACS]
Institut de Biomecanique Humaine Georges Charpak
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique [CERFACS]
Institut de Biomecanique Humaine Georges Charpak
LAPORTE, Sébastien
Institut de Biomecanique Humaine Georges Charpak
Laboratoire de biomécanique [LBM]
Arts et Métiers ParisTech
Institut de Biomecanique Humaine Georges Charpak
Laboratoire de biomécanique [LBM]
Arts et Métiers ParisTech
LECOMPTE, Jennyfer
Laboratoire de biomécanique [LBM]
Institut de Biomecanique Humaine Georges Charpak
< Réduire
Laboratoire de biomécanique [LBM]
Institut de Biomecanique Humaine Georges Charpak
Langue
en
Article de revue
Ce document a été publié dans
Journal of Biomechanics. 2016, vol. 49, n° 2, p. 252-258
Elsevier
Résumé en anglais
The muscle-tendon complex (MTC) is a multi-scale, anisotropic, non-homogeneous structure. It iscomposed of fascicles, gathered together in a conjunctive aponeurosis. Fibers are oriented into the MTCwith a pennation angle. ...Lire la suite >
The muscle-tendon complex (MTC) is a multi-scale, anisotropic, non-homogeneous structure. It iscomposed of fascicles, gathered together in a conjunctive aponeurosis. Fibers are oriented into the MTCwith a pennation angle. Many MTC models use the Finite Element Method (FEM) to simulate thebehavior of the MTC as a hyper-viscoelastic material. The Discrete Element Method (DEM) could beadapted to model fibrous materials, such as the MTC. DEM could capture the complex behavior of amaterial with a simple discretization scheme and help in understanding the influence of the orientationof fibers on the MTC's behavior. The aims of this study were to model the MTC in DEM at the macroscopicscale and to obtain the force/displacement curve during a non-destructive passive tensile test. Anotheraim was to highlight the influence of the geometrical parameters of the MTC on the global mechanicalbehavior. A geometrical construction of the MTC was done using discrete element linked by springs.Young's modulus values of the MTC's components were retrieved from the literature to model themicroscopic stiffness of each spring. Alignment and re-orientation of all of the muscle's fibers with thetensile axis were observed numerically. The hyper-elastic behavior of the MTC was pointed out. Thestructure's effects, added to the geometrical parameters, highlight the MTC's mechanical behavior. It isalso highlighted by the heterogeneity of the strain of the MTC's components. DEM seems to be a promising method to model the hyper-elastic macroscopic behavior of the MTC with simple elasticmicroscopic elements.< Réduire
Mots clés en anglais
Muscle Biomechanics
Discrete Element Method
Origine
Importé de halUnités de recherche