Comportement en fatigue à grand nombre de cycle d’un acier inoxydable 316L obtenu par fabrication additive : effets de la microstructure, de la rugosité et des défauts
Langue
en
Thèses de doctorat
École doctorale
Sciences des métiers de l'ingénieur (SMI) - ED 432Résumé
Cette étude vise à étudier l'influence de la microstructure, de la rugosité et des défauts de surface sur le comportement en fatigue à grand nombre de cycles (FGNC) d'un acier inoxydable 316L obtenu par fabrication additive ...Lire la suite >
Cette étude vise à étudier l'influence de la microstructure, de la rugosité et des défauts de surface sur le comportement en fatigue à grand nombre de cycles (FGNC) d'un acier inoxydable 316L obtenu par fabrication additive (FA). Composée d’un volet expérimental et d’un volet numérique, elle est motivée par le fait que les matériaux issus du procédé de FA présentent souvent un état de surface et une microstructure très distincts des couples procédés de fabrication / matériaux conventionnels. Afin de clairement identifier le rôle joué par chacun des facteurs influents sur la réponse en fatigue, différentes techniques de caractérisation (Profilométrie, EBSD, Tomographie RX, dureté …) sont employées et permettent de mettre en évidence un niveau de rugosité important après fabrication ainsi que des textures morphologiques et cristallographiques marquées. Pour ce qui est du comportement sous chargement mécanique, des essais cycliques à déformation totale imposée mettent en évidence un écrouissage cyclique avec durcissement puis adoucissement. Une importante campagne d’essais en fatigue est conduite sous différents modes de chargement (traction, flexion, torsion) et pour différentes configurations d’état de surface (brut de fabrication, poli). L’analyse des faciès de rupture fait apparaître le rôle prépondérant joué par les défauts de type « lack of fusion » sur les mécanismes d’amorçage en surface des fissures de fatigue. Un diagramme de type Kitagawa-Takahashi est construit à partir de l’observation de la taille des défauts à l’amorçage et le rôle des amas de défaut est clairement démontré. L’étude numérique comporte deux parties distinctes avec, d’abord, un travail préliminaire relatif à la construction d’une méthode non locale adaptée à la prise en compte des effets de microstructure en fatigue dans le cas d’un acier 316L corroyé. A partir des données collectées lors de la campagne expérimentale portant sur l’acier SLM 316L, un modèle d'éléments finis tenant compte de la rugosité, des défauts et de la microstructure est construit. Les calculs sont conduits en utilisant un comportement de type élasticité cubique associé ou pas à de la plasticité cristalline. À l'aide d’une approche faisant appel à la statistique des extrêmes, les résultats des simulations EF sont analysés de manière à quantifier les effets respectifs de la rugosité de surface, de la taille et morphologie des grains, de la texture cristallographique et des défauts.< Réduire
Résumé en anglais
This study aims to investigate the influence of both the microstructure and surface defects on the high cycle fatigue (HCF) behavior of a 316L stainless steel obtained by additive manufacturing (AM). Surface defects and ...Lire la suite >
This study aims to investigate the influence of both the microstructure and surface defects on the high cycle fatigue (HCF) behavior of a 316L stainless steel obtained by additive manufacturing (AM). Surface defects and microstructure are dominant factors of fatigue behavior, while the AM materials often exhibit distinguished surface state and microstructure compared to conventional materials. The current study begins with an investigation of the material properties that are related to fatigue behavior. Microstructure observations of the powder and fabricated specimens are undertaken. Profilometry and tomography analyses make the inherent defects visible. The hardness, elastic behavior and elastic-plastic behavior are studied via mechanical tests. Then, load-controlled fatigue tests concerning different surface-treated specimens under different loading types are conducted. To reveal the mechanism of fatigue failure in the studied specimens, a comprehensive fractography analysis is carried out. Experimental research reveals the weakening of fatigue strength due to lack-of-fusion defects. Yet, the effect of the microstructural attributes is difficult to evaluate without numerical tools. A preliminary numerical study about the application of the non-local method in an explicit microstructure sensitive model is undertaken to complement the microstructure-sensitive modeling framework. Based on the data collected in the experimental campaign, a finite element model that can take into consideration of the defects and the microstructure of the SLM SS 316L is built up. Finite element analyses are performed with both cubic elasticity and polycrystal plasticity constitutive laws. With the help of the statistical method, the results from the FE model are used to quantitatively assess the influence of surface roughness and microstructural attributes on the fatigue performance of SLM SS 316L.< Réduire
Mots clés
Fatigue à grand nombre de cycles
Fabrication additive
Acier inoxydable 316L
Défaut de surface
Microstructure
Méthode des éléments finis
Kitagawa-Takahashi
Elasticité cubique
Plasticité cristalline
Méthode non locale
Mots clés en anglais
High cycle fatigue
Additive manufacturing
Stainless steel 316L
Surface defect
Microstructure
Finite element method
Selective Laser Melting
Kitagawa-Takahashi effect
Cubic elasticity
Crystal plasticity
Non-local method
Origine
Importé de halUnités de recherche