Mécanisme de filtration des suspensions de microgel
Language
en
Thèses de doctorat
Date
2019-02-13Speciality
Physico-chimie de la matière condensée
Doctoral school
École doctorale des sciences chimiques (Talence, Gironde)Abstract
Les écoulements de suspensions dans des milieux poreux sont particulièrement complexes, notamment à cause du couplage d’écoulements de cisaillement et d’écoulements élongationnels (Herzig, Leclerc et Goff, 1970). On les ...Read more >
Les écoulements de suspensions dans des milieux poreux sont particulièrement complexes, notamment à cause du couplage d’écoulements de cisaillement et d’écoulements élongationnels (Herzig, Leclerc et Goff, 1970). On les retrouve fréquemment dans les applications industrielles, l’une des applications principales se trouvant lors des opérations de production de pétrole et de gaz. Lors de la construction d'un puits, des additifs polymères anti perte de fluide empêchent à plusieurs étapes l'écoulement de fluide entre le puits et la formation de roche poreuse environnante. La perte de fluide est un problème grave si elle n’est pas maîtrisée ; elle s’ajoute alors au coût total des opérations et pourrait surtout avoir des conséquences néfastes pour l’environnement et les opérateurs. Parmi les technologies disponibles, des additifs polymères connus sous le nom d'additifs anti perte de fluide, tels que des microgels et des particules de latex, sont ajoutés aux fluides injectés pour limiter les pertes de fluide (généralement de l'eau) via un mécanisme de colmatage / blocage de pores du support poreux.Le comportement de blocage de beaucoup de ces additifs anti perte de fluide a été testé par des méthodes conventionnelles qui impliquent l'application d'une différence de pression élevée (typiquement 35-70 bars) sur le fluide formulé comprenant les additifs contre un filtre représentatif de la taille typique des pores de la formation (une grille métallique, de la céramique ou du papier filtre) et la mesure du volume de filtrat en fonction du temps. Cependant, ces méthodes standard ne permettent pas de comprendre le mécanisme sous-jacent de la dynamique de blocage des supports poreux. Par conséquent, une meilleure compréhension du mécanisme de blocage d’un support poreux par des additifs industriels anti perte de fluide est nécessaire.Dans ce travail, nous utilisons des suspensions de microgels réticulés chimiquement comme additifs anti perte de fluide et nous étudions leur comportement de blocage dans des milieux poreux modèles transparents. Nous utilisons des dispositifs à base de polydiméthylsiloxane (PDMS) comme modèle de support poreux permettant l'observation directe du processus de blocage couplée à des mesures quantitatives. Nous fabriquons des dispositifs microfluidiques de filtration frontale et de filtration latérale avec différentes tailles de pores afin de déterminer comment des paramètres tels que la mouillabilité de la surface, la concentration en particules, la taille des particules et le débit affectent la formation du gâteau de filtration.Nous présentons une méthode de contrôle de la taille des particules constituant les suspensions de microgels. Nous décrivons ensuite une approche pour préparer des suspensions à plus haute concentration et étudions la rhéologie des suspensions en fonction de la concentration en particules. De plus, nous présentons un procédé simple pour former un gâteau de filtration à partir de la suspension de microgels sur une membrane et estimons la perméabilité à l’eau du gâteau de filtration formé selon la loi de Darcy.Read less <
English Abstract
The flow of suspensions in porous media is a complex phenomenon due to the mechanisms involved such as both shear and extensional flows (Herzig, Leclerc, & Goff, 1970). Their use in industrial applications is quite extensive ...Read more >
The flow of suspensions in porous media is a complex phenomenon due to the mechanisms involved such as both shear and extensional flows (Herzig, Leclerc, & Goff, 1970). Their use in industrial applications is quite extensive with one of the major applications being at various stages of oil and gas production operations. At several stages of a well construction, flow of fluid between the well and the surrounding porous rock formation is prevented thanks to the polymeric fluid loss control additives. Fluid loss is a severe problem if not controlled, which would add up to the total cost of operations and more importantly could have hazardous impacts on the environment or operators. Among several technologies industrially available, polymeric additives popularly known as fluid loss additives such as microgels and latex particles are added to the injected fluids to limit the loss of fluid (usually water) via the mechanism of pore clogging/jamming in porous media.Many of these fluid loss additives have been tested for their jamming behaviour by conventional methods which involve the application of a high pressure difference (typically 35-70 bars) on the formulated fluid comprising of the additives against a filter representative of the formation’s typical pore size (either a metallic grid, ceramic or filter paper) and the measurement of the filtrate volume versus time. However, these standard methods do not give any insight in understanding the underlying mechanism of jamming dynamics in porous media, hence, a better understanding of the mechanism of jamming in porous media by industrial fluid loss additives is needed.In this work, we use chemically cross-linked microgel suspensions as the fluid loss additive and study its jamming behaviour in transparent model porous media. We make use of polydimethylsiloxane (PDMS) devices as model porous media which allows direct observation of the jamming process coupled with quantitative measurements. We fabricate microfluidic devices for frontal flow filtration and lateral flow filtration with different pore sizes to see how parameters like surface wettability, particle concentration, particle size and flow rates affect the filter cake formation.We present a method of controlling the size of the microgel suspensions. We then describe an approach for preparing higher concentration suspensions and investigate the rheology of the suspensions as a function of concentration. Furthermore, we present a simple method of forming a filter cake of the microgel suspension on a supporting membrane and estimate the permeability of the filter cake formed for the flow of water using Darcy’s law.Read less <
Keywords
Microfluidique
Suspensions de microgels
Gâteau de filtration
Milleux poreux
Rhéologie
Perméabilité
Perte de fluide
English Keywords
Microfluidics
Microgel suspensions
Filter cake
Porous media
Rheology
Permeability
Fluid loss
Origin
STAR importedCollections