1H, 13C, 15N NMR resonance assignments and secondary structure determination of the extra-cellular domain from the human proapoptotic TRAIL-R2 death receptor 5 (DR5-ECD)
Langue
EN
Article de revue
Ce document a été publié dans
Biomolecular Nmr Assignments. 2018, vol. 12, n° 2, p. 309-314
Résumé en anglais
Death receptors (DR) selectively drive cancer cells to apoptosis upon binding to the Tumor necrosis factor-a-Related Apoptosis-Inducing Ligand (TRAIL). Complex formation induces the oligomerization of the death receptors ...Lire la suite >
Death receptors (DR) selectively drive cancer cells to apoptosis upon binding to the Tumor necrosis factor-a-Related Apoptosis-Inducing Ligand (TRAIL). Complex formation induces the oligomerization of the death receptors DR4 (TRAIL-R1) and DR5 (TRAIL-R2) and transduces the apoptogenic signal to their respective death domains, leading to Death Inducing Signaling Complex (DISC) formation, caspase activation and ultimately cell death. Several crystal structures of the ExtraCellular Domain from Death Receptor 5 (DR5-ECD) have been reported in complex with the TRAIL ligand or anti-DR5 antibodies, but none for the isolated protein. In order to fill this gap and to perform binding experiments with TRAIL peptidomimetics, we have produced isotopically labelled DR5-ECD and started a conformational analysis by using high-field 3D NMR spectroscopy. Herein, we present the first resonance assignment of a TRAIL receptor in solution and the determination of its secondary structure from NMR chemical shifts.< Réduire
Mots clés en anglais
DR5
TRAIL
Cancer
Apoptosis
NMR spectroscopy
Resonance assignment
Secondary structure
Unités de recherche