Do machine learning methods lead to similar individualized treatment rules? A comparison study on real data
BOUVIER, Florie
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
PEYROT, Etienne
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
BALENDRAN, Alan
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
See more >
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
BOUVIER, Florie
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
PEYROT, Etienne
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
BALENDRAN, Alan
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
PETIT, François
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
PORCHER, Raphaël
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
Centre d'épidémiologie Clinique [Hôtel-Dieu]
< Reduce
Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques [CRESS (U1153 / UMR_A 1125)]
Methods of therapeutic evaluation of chronic diseases | Méthodes de l’évaluation thérapeutique des maladies chroniques [METHODS [CRESS - U1153 / UMR_A 1125]]
Centre d'épidémiologie Clinique [Hôtel-Dieu]
Language
EN
Article de revue
This item was published in
Statistics in Medicine. 2024-05-20, vol. 43, n° 11, p. 2043-2061
English Abstract
Identifying patients who benefit from a treatment is a key aspect of personalized medicine, which allows the development of individualized treatment rules (ITRs). Many machine learning methods have been proposed to create ...Read more >
Identifying patients who benefit from a treatment is a key aspect of personalized medicine, which allows the development of individualized treatment rules (ITRs). Many machine learning methods have been proposed to create such rules. However, to what extent the methods lead to similar ITRs, that is, recommending the same treatment for the same individuals is unclear. In this work, we compared 22 of the most common approaches in two randomized control trials. Two classes of methods can be distinguished. The first class of methods relies on predicting individualized treatment effects from which an ITR is derived by recommending the treatment evaluated to the individuals with a predicted benefit. In the second class, methods directly estimate the ITR without estimating individualized treatment effects. For each trial, the performance of ITRs was assessed by various metrics, and the pairwise agreement between all ITRs was also calculated. Results showed that the ITRs obtained via the different methods generally had considerable disagreements regarding the patients to be treated. A better concordance was found among akin methods. Overall, when evaluating the performance of ITRs in a validation sample, all methods produced ITRs with limited performance, suggesting a high potential for optimism. For non‐parametric methods, this optimism was likely due to overfitting. The different methods do not lead to similar ITRs and are therefore not interchangeable. The choice of the method strongly influences for which patients a certain treatment is recommended, drawing some concerns about their practical use.Read less <
English Keywords
comparison study
individualized treatment rule
machine learning
personalized medicine
ANR Project
PaRis Artificial Intelligence Research InstitutE - ANR-19-P3IA-0001