One-Pot Synthesis and PEGylation of Hyperbranched Polyacetals with a Degree of Branching of 100%
VIGNOLLE, Joan
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
See more >
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
VIGNOLLE, Joan
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
CRAMAIL, Henri
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
TATON, Daniel
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
< Reduce
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
Language
en
Article de revue
This item was published in
Macromolecules. 2014, vol. 47, n° 5, p. 1532-1542
American Chemical Society
English Abstract
The Bronsted acid-catalyzed polytransacetalization of hydroxymethylbenzaldehyde dimethylacetal (1), a commercially available AB(2)-type monomer, led to hyperbranched polyacetals (HBPA's) with a degree of branching (DB) ...Read more >
The Bronsted acid-catalyzed polytransacetalization of hydroxymethylbenzaldehyde dimethylacetal (1), a commercially available AB(2)-type monomer, led to hyperbranched polyacetals (HBPA's) with a degree of branching (DB) around 0.5 by forming methanol as byproduct. In sharp contrast, the polyacetalization of the nonprotected homologue, namely, hydroxymethylbenzaldehyde (2), yielded HBPA's with DB = 1, by forming water as byproduct, under the same acidic conditions. This major difference arises from the instability of the initially formed hemiacetal intermediates, which react faster than aldehyde moieties, driving the polyacetalization toward the quantitative formation of dendritic acetal units. This represents a rare example of defect-free hyperbranched polymer synthesis utilizing a very simple AB(2)-type monomer. Bronsted acid catalysts included p-toluenesulfonic, camphorsulfonic, and pyridinium camphorsulfonic acids. Trapping of the water generated during polyacetalization of 2 was accomplished using molecular sieves regularly renewed, which allowed achieving polymers of relatively high molar masses. These HBPA's with DB = 1 featuring multiple aldehyde functions at their periphery were further derivatized into PEGylated HBPA's, using linear amino-terminated poly(ethylene oxide)s of different molar masses. This led to submicrometric sized HBPA's with a core shell architecture. Finally, HBPA derivatives could be readily hydrolyzed under acidic conditions (e.g., pH = 4), owing to the acid sensitivity of their constitutive acetal linkages.Read less <
English Keywords
DENDRIMERS
POLYGLYCEROLS
DIETHYLSTILBESTROL
NANOPARTICLES
DESIGN
STAR POLYMERS
DEGRADATION
RELEASE
CONTROLLED DRUG-DELIVERY
COPOLYMER MICELLES
Origin
Hal imported