Study of the degradation process of ofloxacin with free chlorine by using ESI-LCMSMS: Kinetic study, by-products formation pathways and fragmentation mechanisms
RIFAI, Ahmad
National Council of Scientific Research (NCSR), Lebanese Atomic Energy Commission (LAEC), Laboratory of Analysis of Organic Pollutants (LAOP), B. P. 11- 8281, Riad El Solh, 1107 2260, Beirut, Lebanon.
See more >
National Council of Scientific Research (NCSR), Lebanese Atomic Energy Commission (LAEC), Laboratory of Analysis of Organic Pollutants (LAOP), B. P. 11- 8281, Riad El Solh, 1107 2260, Beirut, Lebanon.
RIFAI, Ahmad
National Council of Scientific Research (NCSR), Lebanese Atomic Energy Commission (LAEC), Laboratory of Analysis of Organic Pollutants (LAOP), B. P. 11- 8281, Riad El Solh, 1107 2260, Beirut, Lebanon.
National Council of Scientific Research (NCSR), Lebanese Atomic Energy Commission (LAEC), Laboratory of Analysis of Organic Pollutants (LAOP), B. P. 11- 8281, Riad El Solh, 1107 2260, Beirut, Lebanon.
AL ISKANDARANI, Mohammad
National Council of Scientific Research (NCSR), Lebanese Atomic Energy Commission (LAEC), Laboratory of Analysis of Organic Pollutants (LAOP), B. P. 11- 8281, Riad El Solh, 1107 2260, Beirut, Lebanon; Faculty of Public Health-Section I, Beyrouth, Lebanon.
< Reduce
National Council of Scientific Research (NCSR), Lebanese Atomic Energy Commission (LAEC), Laboratory of Analysis of Organic Pollutants (LAOP), B. P. 11- 8281, Riad El Solh, 1107 2260, Beirut, Lebanon; Faculty of Public Health-Section I, Beyrouth, Lebanon.
Language
EN
Article de revue
This item was published in
Chemosphere. 2017-12, vol. 189, p. 46-54
English Abstract
This study was conducted to gain a better understanding of the fate of fluoroquinolone antibacterial ofloxacin (OFX) which is the free available chlorine (FAC) in order to determine its effect during water chlorination ...Read more >
This study was conducted to gain a better understanding of the fate of fluoroquinolone antibacterial ofloxacin (OFX) which is the free available chlorine (FAC) in order to determine its effect during water chlorination process. The Direct reactions of FAC with OFX were quite rapid. A half-life of 7.7 s was measured under pseudo-first order conditions in the presence of an excess of total chlorine ([FAC]0 = 13 μM and [OFX]0 = 0.55 μM at pH 7.2 and 20 °C in buffered reagent water. Free chlorine reactions rates were of first-order type in both substrate and oxidant with specific second-order rate constants of 6.8 × 103 M-1 s-1. No induced back reactions or other interference by using thiosulfate to stop the chlorination reaction was shown. The seven products of the reaction were determined by using the LC/MS/MS analysis. Structures were investigated due to the explication of transitions obtained at different CID energies by LC-ESI-MS/MS. Pathways of the formations of these by-products were presented in this study and pathways of the fragmentations of pseudo molecular ions of the structures proposed were presented in supplementary files.Read less <
English Keywords
GEOF
Chlorination
Degradation
Formation and fragmentation pathways
Kinetic study
LCMSMS
Ofloxacine