The Dicorynia guianensis population genomic structure mirrors the distribution of environmental variables in French Guiana
BONNIER, Julien
Biodiversité, Gènes & Communautés [BioGeCo]
Ecologie des forêts de Guyane [UMR ECOFOG]
Biodiversité, Gènes & Communautés [BioGeCo]
Ecologie des forêts de Guyane [UMR ECOFOG]
SÁEZ-LAGUNA, Enrique
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria = National Institute for Agricultural and Food Research and Technology [INIA]
See more >
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria = National Institute for Agricultural and Food Research and Technology [INIA]
BONNIER, Julien
Biodiversité, Gènes & Communautés [BioGeCo]
Ecologie des forêts de Guyane [UMR ECOFOG]
Biodiversité, Gènes & Communautés [BioGeCo]
Ecologie des forêts de Guyane [UMR ECOFOG]
SÁEZ-LAGUNA, Enrique
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria = National Institute for Agricultural and Food Research and Technology [INIA]
< Reduce
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria = National Institute for Agricultural and Food Research and Technology [INIA]
Language
en
Autre communication scientifique (congrès sans actes - poster - séminaire...)
This item was published in
6. European Conservation Genetics Meeting 2024, 2024-08-28, Lausane.
English Abstract
Essential ecosystem services are provided by rainforests, which play a pivotal role in sustaining life on Earth. Habitat and biodiversity loss is an imminent threat to tropical rainforest regions worldwide because of ...Read more >
Essential ecosystem services are provided by rainforests, which play a pivotal role in sustaining life on Earth. Habitat and biodiversity loss is an imminent threat to tropical rainforest regions worldwide because of agricultural development, mining, overexploitation of timber, and climate change. To ensure their continued adaptability and resilience in a changing world, it is imperative to preserve genetic diversity within tropical rainforest species. Within the smaller context of French Guiana, the specters of climate change, affecting temperature and rainfall, pose unprecedented challenges to this ecosystem, including on the hyperdominant tree species, Dicorynia guianensis (Fabaceae). The genetic data suggests a significant differentiation of populations in the western part of French Guiana and a demographic history of populations that is regionally variable. New genome resequencing data allows us to examine regional-scale genomic signatures of adaptation to climate and soil in this drought-sensitive species and to model genetics-informed distribution range projections under future climate regimes. The local-scale family structure will be better understood with High-throughput SSR-Seq data, which may explain differences between sites in colonization dynamics and local-scale spatial genetic structure. We can develop conservation strategies that can adapt to the challenges posed by future climate scenarios by understanding genetic responses to climate change.Read less <
English Keywords
Population genetics
Conservation genetics
Tropical trees
Dicorynia guianensis
Local adaptation
ANR Project
CEnter of the study of Biodiversity in Amazonia - ANR-10-LABX-0025
Origin
Hal imported