Isohydricity and hydraulic isolation explain reduced hydraulic failure risk in an experimental tree species mixture
COCHARD, Hervé
Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant [PIAF]
See more >
Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant [PIAF]
COCHARD, Hervé
Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant [PIAF]
Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant [PIAF]
GUILLEMOT, Joannès
Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes [UMR Eco&Sols]
Escola Superior de Agricultura "Luiz de Queiroz" [ESALQ]
< Reduce
Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes [UMR Eco&Sols]
Escola Superior de Agricultura "Luiz de Queiroz" [ESALQ]
Language
en
Article de revue
This item was published in
Plant Physiology. 2024-05-15, vol. 195, n° 4, p. 2668–2682
Oxford University Press ; American Society of Plant Biologists
English Abstract
Abstract Species mixture is promoted as a crucial management option to adapt forests to climate change. However, there is little consensus on how tree diversity affects tree water stress, and the underlying mechanisms ...Read more >
Abstract Species mixture is promoted as a crucial management option to adapt forests to climate change. However, there is little consensus on how tree diversity affects tree water stress, and the underlying mechanisms remain elusive. By using a greenhouse experiment and a soil-plant-atmosphere hydraulic model, we explored whether and why mixing the isohydric Aleppo pine (Pinus halepensis, drought avoidant) and the anisohydric holm oak (Quercus ilex, drought tolerant) affects tree water stress during extreme drought. Our experiment showed that the intimate mixture strongly alleviated Q. ilex water stress while it marginally impacted P. halepensis water stress. Three mechanistic explanations for this pattern are supported by our modeling analysis. First, the difference in stomatal regulation between species allowed Q. ilex trees to benefit from additional soil water in mixture, thereby maintaining higher water potentials and sustaining gas exchange. By contrast, P. halepensis exhibited earlier water stress and stomatal regulation. Second, P. halepensis trees showed stable water potential during drought, although soil water potential strongly decreased, even when grown in a mixture. Model simulations suggested that hydraulic isolation of the root from the soil associated with decreased leaf cuticular conductance was a plausible explanation for this pattern. Third, the higher predawn water potentials for a given soil water potential observed for Q. ilex in mixture can—according to model simulations—be explained by increased soil-to-root conductance, resulting from higher fine root length. This study brings insights into the mechanisms involved in improved drought resistance of mixed species forests.Read less <
ANR Project
Mixed Forest plantations for climate Change mitigation and adaptation. - ANR-20-EBI5-0003
L'eau totale disponible pour l'arbre : un paramètre clé, manquant pour évaluer la vulnérabilité du fonctionnement des forêts face au changement climatique - ANR-23-CE01-0008
L'eau totale disponible pour l'arbre : un paramètre clé, manquant pour évaluer la vulnérabilité du fonctionnement des forêts face au changement climatique - ANR-23-CE01-0008
Origin
Hal imported