Experimental comparison of energy management strategies for a hybrid electric bus in a test-bench
CAMBLONG, Haritza
Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] [UPV / EHU]
ESTIA INSTITUTE OF TECHNOLOGY
< Leer menos
Universidad del País Vasco [Espainia] / Euskal Herriko Unibertsitatea [España] = University of the Basque Country [Spain] = Université du pays basque [Espagne] [UPV / EHU]
ESTIA INSTITUTE OF TECHNOLOGY
Idioma
EN
Communication dans un congrès
Este ítem está publicado en
2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), 2018-04-10, Monte-Carlo. p. 1-9
IEEE
Resumen en inglés
Energy management in hybrid and electric vehicles is a key factor to improve the operational performance and meet the efficiency objectives defined in the transport sector. Thus, optimized energy management strategies ...Leer más >
Energy management in hybrid and electric vehicles is a key factor to improve the operational performance and meet the efficiency objectives defined in the transport sector. Thus, optimized energy management strategies (EMS), before being integrated in a real system, need to be validated in a scaled test-bench platform in order to identify the possible deviations from the expected simulation-based profiles, thus, saving time during the implementation in the real application. An economical and flexible way of validating these strategies is the Hardware-in-the-loop (HIL) simulation. In this framework, this work aims to compare the experimental results of two optimized (simulation-based) EMSs applied on a hybrid electric urban bus (HEB) in terms of real-time operational performance. Both EMSs handle the proper power split behavior of the vehicle demand between a genset (internal combustion engine connected to an electric generator) and a hybrid energy storage system (combining Li-ion batteries with supercapacitors). The hardware in the test-bench consist of a scaled electrical DC grid of an HEB. This hardware platform is combined with software models allowing to emulate the real behavior of the genset, battery, supercapacitor, traction and auxiliary loads.< Leer menos
Centros de investigación