Swelling behavior of polymeric membranes to metalworking fluids
TUDURI, Ludovic
Environnements et Paléoenvironnements OCéaniques [EPOC]
Institut de recherche Robert-Sauvé en santé et en sécurité du travail [IRSST]
See more >
Environnements et Paléoenvironnements OCéaniques [EPOC]
Institut de recherche Robert-Sauvé en santé et en sécurité du travail [IRSST]
TUDURI, Ludovic
Environnements et Paléoenvironnements OCéaniques [EPOC]
Institut de recherche Robert-Sauvé en santé et en sécurité du travail [IRSST]
< Reduce
Environnements et Paléoenvironnements OCéaniques [EPOC]
Institut de recherche Robert-Sauvé en santé et en sécurité du travail [IRSST]
Language
EN
Article de revue
This item was published in
Journal of Applied Polymer Science. 2017-09-12, vol. 135, n° 3, p. 45717
English Abstract
In some working places, such as metal manufacturing or automotive services, mechanical hazards commonly occur along with chemical hazards, particularly metalworking fluids (MWFs). The presence of these chemicals could ...Read more >
In some working places, such as metal manufacturing or automotive services, mechanical hazards commonly occur along with chemical hazards, particularly metalworking fluids (MWFs). The presence of these chemicals could modify the properties of gloves made from polymeric materials and thus reduce their protective properties against chemical contamination (solvent, MWFs) and mechanical risks (puncture and cutting). This work focused on determining the swelling characteristics and the resistance of six polymeric membranes which were exposed to seven industrial MWFs. We found that the swelling tests can be used to classify the potential of coating polymers in descending order of their resistance to MWFs: nitrile, polyurethane>poly(vinyl chloride), neoprene> butyl, latex. The analysis by multiple linear regression showed, for the first time, that the density or the viscosity-gravity constant of the fluid and Hansen’s solubility parameters of the polymers have a significant impact on the swelling of polymer. For the first time, two new multiple regression models have been proposed, to predict the swelling phenomena of polymers under various MWFs with an accuracy of 80%. The effect of temperature on mechanical properties and morphology of material was also examinedRead less <