Solution behavior and encapsulation properties of fatty acid-elastin-like polypeptide conjugates
WEBER, Amelie
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Voir plus >
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
WEBER, Amelie
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
FAUQUIGNON, Martin
Laboratoire de Chimie des Polymères Organiques [LCPO]
Centre de Recherche Paul Pascal [CRPP]
Laboratoire de Chimie des Polymères Organiques [LCPO]
Centre de Recherche Paul Pascal [CRPP]
GARBAY, Bertrand
Laboratoire de Chimie des Polymères Organiques [LCPO]
Institut Polytechnique de Bordeaux [Bordeaux INP]
< Réduire
Laboratoire de Chimie des Polymères Organiques [LCPO]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Langue
EN
Article de revue
Ce document a été publié dans
RSC Advances. 2023-01-12, vol. 13, n° 3, p. 2190
Résumé en anglais
Developing new biomaterials is an active research area owing to their applications in regenerative medicine, tissue engineering and drug delivery. Elastin-like polypeptides (ELPs) are good candidates for these applications ...Lire la suite >
Developing new biomaterials is an active research area owing to their applications in regenerative medicine, tissue engineering and drug delivery. Elastin-like polypeptides (ELPs) are good candidates for these applications because they are biosourced, biocompatible and biodegradable. With the aim of developing ELP-based micelles for drug delivery applications we have synthesized 15 acyl-ELP compounds by conjugating myristic, palmitic, stearic, oleic or linoleic acid to the N-terminus of three ELPs differing in molar mass. The ELP-fatty acid conjugates have interesting solution behavior. They form micelles at low temperatures and aggregate above the cloud point temperature (Tcp). The critical micelle concentration depends on the fatty acid nature while the micelle size is mainly determined by the ELP block length. We were able to show that ELPs were better hydrated in the micelles than in their individual state in solution. The micelles are stable in phosphate-buffer saline at temperatures below the Tcp, which can vary between 20 °C and 38 °C depending on the length or hydrophilicity of the ELP. Acyl-ELP micelles were loaded with the small hydrophobic molecule Nile red. The encapsulation efficiency and release kinetics showed that the best loading conditions were achieved with the largest ELP conjugated to stearic acid.< Réduire
Mots clés en anglais
Elastin-like polypeptides (ELPs)
Fatty acids
Star-like micelles
Self-assembly
Nile red encapsulation
Unités de recherche