Methylmercury effects on migratory behaviour in glass eels (Anguilla anguilla): An experimental study using isotopic tracers
Language
EN
Article de revue
This item was published in
Comparative Biochemistry and Physiology - Part C: Toxicology and Pharmacology. 2015-05-01, vol. 171, p. 15-27
English Abstract
The effect of methylmercury (MeHg) on glass eels' propensity to migrate, mitochondrial activity and antioxidative defence systems was investigated. Marine glass eels were first sorted in an experimental flume according to ...Read more >
The effect of methylmercury (MeHg) on glass eels' propensity to migrate, mitochondrial activity and antioxidative defence systems was investigated. Marine glass eels were first sorted in an experimental flume according to their response to dusk. Fish responding to the decrease in light intensity by ascending in the water column and moving with or against the flow were considered as having a high propensity to migrate (migrant). Glass eels still sheltering at the end of the 24 h catching period were considered as having a low propensity to migrate and were called non-migrant. Migrant and non-migrant glass eels were then individually tagged and exposed to isotopically enriched 201MeHg (50 ng L− 1) for 11 days. The effect of contamination was studied on muscle fibre structure, and the expression level of genes involved in mitochondrial activity and antioxidative defence systems. To investigate the effect of MeHg on glass eel behaviour, migrant and non-migrant glass eels were sorted again and the bioaccumulation of 201MeHg and its demethylation product (201Hg(II)) were determined for each individual. MeHg exposure increased activity in non-migrant glass eels but not migratory behaviour. Contamination affected mitochondrial structure and metabolism and suggests a higher oxidative stress and activation of antioxidative defence systems in non-migrant glass eels. Overall, our results suggest that exposure to MeHg might induce an increase in energy expenditure and a higher vulnerability to predation in non-migrant glass eels in the wild.Read less <