Modeling and Simulation of a Dynamic Task-Based Runtime System for Heterogeneous Multi-Core Architectures
STANISIC, Luka
Middleware efficiently scalable [MESCAL]
Laboratoire d'Informatique de Grenoble [LIG]
Middleware efficiently scalable [MESCAL]
Laboratoire d'Informatique de Grenoble [LIG]
THIBAULT, Samuel
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
LEGRAND, Arnaud
Middleware efficiently scalable [MESCAL]
Laboratoire d'Informatique de Grenoble [LIG]
Voir plus >
Middleware efficiently scalable [MESCAL]
Laboratoire d'Informatique de Grenoble [LIG]
STANISIC, Luka
Middleware efficiently scalable [MESCAL]
Laboratoire d'Informatique de Grenoble [LIG]
Middleware efficiently scalable [MESCAL]
Laboratoire d'Informatique de Grenoble [LIG]
THIBAULT, Samuel
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
LEGRAND, Arnaud
Middleware efficiently scalable [MESCAL]
Laboratoire d'Informatique de Grenoble [LIG]
< Réduire
Middleware efficiently scalable [MESCAL]
Laboratoire d'Informatique de Grenoble [LIG]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Euro-par - 20th International Conference on Parallel Processing, 2014-08-26, Porto. 2014-08-27p. 50-62
Springer International Publishing Switzerland
Résumé en anglais
Multi-core architectures comprising several GPUs have become mainstream in the field of High-Performance Computing. However, obtaining the maximum performance of such heterogeneous machines is challenging as it requires ...Lire la suite >
Multi-core architectures comprising several GPUs have become mainstream in the field of High-Performance Computing. However, obtaining the maximum performance of such heterogeneous machines is challenging as it requires to carefully offload computations and manage data movements between the different processing units. The most promising and successful approaches so far rely on task-based runtimes that abstract the machine and rely on opportunistic scheduling algorithms. As a consequence, the problem gets shifted to choosing the task granularity, task graph structure, and optimizing the scheduling strategies. Trying different combinations of these different alternatives is also itself a challenge. Indeed, getting accurate measurements requires reserving the target system for the whole duration of experiments. Furthermore, observations are limited to the few available systems at hand and may be difficult to generalize. In this article, we show how we crafted a coarse-grain hybrid simulation/emulation of StarPU, a dynamic runtime for hybrid architectures, over SimGrid, a versatile simulator for distributed systems. This approach allows to obtain performance predictions accurate within a few percents on classical dense linear algebra kernels in a matter of seconds, which allows both runtime and application designers to quickly decide which optimization to enable or whether it is worth investing in higher-end GPUs or not.< Réduire
Mots clés en anglais
starpu-simgrid
Project ANR
Simulation de systèmes de prochaine génération - ANR-11-INFR-0013
Solveurs pour architectures hétérogènes utilisant des supports d'exécution - ANR-13-MONU-0007
Solveurs pour architectures hétérogènes utilisant des supports d'exécution - ANR-13-MONU-0007
Origine
Importé de halUnités de recherche