Numerical model of a compressible multi-fluid fluctuating flow
BERTHON, Christophe
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
NKONGA, Boniface
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
BERTHON, Christophe
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
NKONGA, Boniface
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
< Réduire
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Langue
en
Article de revue
Ce document a été publié dans
International Journal on Finite Volumes. 2005, vol. 2, p. 1-22
Institut de Mathématiques de Marseille, AMU
Résumé en anglais
In the present work, we consider the numerical approximations of multi-fluid compressible fluctuating flows. Assuming that the flow is composed by non mixing compressible fluids, we derived a modelization that can be view ...Lire la suite >
In the present work, we consider the numerical approximations of multi-fluid compressible fluctuating flows. Assuming that the flow is composed by non mixing compressible fluids, we derived a modelization that can be view as an extension of the standard compressible (k, ǫ). This model is fundamentally in non conservation form (the coupling between fluids and turbulence involves non conservative products) and the usual finite volume methods fail. The nonlinear projection scheme is used to preserve, at the discrete level, the main properties of the model. The numerical computations are performed on the Richtmeyer-Meshkov instability to validate the approach and to measure the influence of fluctuations.< Réduire
Mots clés en anglais
compressible flows
velocity fluctuations
non-conservative equations
nonlinear projection methods
Origine
Importé de halUnités de recherche