Tunable parallel experiments in a GridRPC framework: application to linear solvers
CANIOU, Yves
Laboratoire de l'Informatique du Parallélisme [LIP]
Algorithms and Scheduling for Distributed Heterogeneous Platforms [GRAAL]
Laboratoire de l'Informatique du Parallélisme [LIP]
Algorithms and Scheduling for Distributed Heterogeneous Platforms [GRAAL]
RAMET, Pierre
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
CANIOU, Yves
Laboratoire de l'Informatique du Parallélisme [LIP]
Algorithms and Scheduling for Distributed Heterogeneous Platforms [GRAAL]
Laboratoire de l'Informatique du Parallélisme [LIP]
Algorithms and Scheduling for Distributed Heterogeneous Platforms [GRAAL]
RAMET, Pierre
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Réduire
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Langue
en
Communication dans un congrès
Ce document a été publié dans
VECPAR'08, 2008, Toulouse. 2008, vol. 5336, p. 46--52
Springer Verlag
Résumé en anglais
The use of scientific computing centers becomes more and more difficult on modern parallel architectures. Users must face a large variety of batch systems (with their own specific syntax) and have to set many parameters ...Lire la suite >
The use of scientific computing centers becomes more and more difficult on modern parallel architectures. Users must face a large variety of batch systems (with their own specific syntax) and have to set many parameters to tune their applications (e.g., processors and/or threads mapping, memory resource constraints). Moreover, finding the optimal performance is not the only criteria when a pool of jobs is submitted on the Grid (for numerical parametric analysis for instance) and one must focus on the wall-time completion. In this work we tackle the problem by using the D IET Grid middleware that integrates an adaptable PaStiX service to solve a set of experiments issued from the simulations of the ASTER project.< Réduire
Origine
Importé de halUnités de recherche