Partitioning and Blocking Issues for a Parallel Incomplete Factorization
HÉNON, Pascal
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
RAMET, Pierre
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
ROMAN, Jean
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
HÉNON, Pascal
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
RAMET, Pierre
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
ROMAN, Jean
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Réduire
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Langue
en
Communication dans un congrès
Ce document a été publié dans
PARA'06, 2006, Umea. 2006, vol. 4699, p. 929--937
Springer Verlag
Résumé en anglais
The purpose of this work is to provide a method which exploits the parallel block-wise algorithmic approach used in the framework of high performance sparse direct solvers in order to develop robust and efficient preconditioners ...Lire la suite >
The purpose of this work is to provide a method which exploits the parallel block-wise algorithmic approach used in the framework of high performance sparse direct solvers in order to develop robust and efficient preconditioners based on a parallel incomplete factorization.< Réduire
Origine
Importé de halUnités de recherche