Progressive Tree Neighborhood Applied to the Maximum Parsimony Problem
GOËFFON, Adrien
Laboratoire d'Etudes et de Recherche en Informatique d'Angers [LERIA]
Models and Algorithms for the Genome [ MAGNOME]
Laboratoire d'Etudes et de Recherche en Informatique d'Angers [LERIA]
Models and Algorithms for the Genome [ MAGNOME]
GOËFFON, Adrien
Laboratoire d'Etudes et de Recherche en Informatique d'Angers [LERIA]
Models and Algorithms for the Genome [ MAGNOME]
< Réduire
Laboratoire d'Etudes et de Recherche en Informatique d'Angers [LERIA]
Models and Algorithms for the Genome [ MAGNOME]
Langue
en
Article de revue
Ce document a été publié dans
IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2008, vol. 5, n° 1, p. 136--145
Institute of Electrical and Electronics Engineers
Résumé en anglais
The Maximum Parsimony problem aims at reconstructing a phylogenetic tree from DNA sequences while minimizing the number of genetic transformations. To solve this NP-complete problem, heuristic methods have been developed, ...Lire la suite >
The Maximum Parsimony problem aims at reconstructing a phylogenetic tree from DNA sequences while minimizing the number of genetic transformations. To solve this NP-complete problem, heuristic methods have been developed, often based on local search. In this article, we focus on the influence of the neighborhood relations. After analyzing the advantages and drawbacks of the well-known NNI, SPR and TBR neighborhoods, we introduce the concept of Progressive Neighborhood, which consists in constraining progressively the size of the neighborhood as the search advances. We empirically show that applied to the Maximum Parsimony problem, this progressive neighborhood turns out to be more efficient and robust than the classic neighborhoods using a descent algorithm. Indeed, it allows to find better solutions with a smaller number of iterations or trees evaluated.< Réduire
Mots clés en anglais
optimization
combinatorial algorithms
phylogeny reconstruction
maximum parsimony
Origine
Importé de halUnités de recherche