A Parallel Multistage ILU Factorization based on a Hierarchical Graph Decomposition
HÉNON, Pascal
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
SAAD, Yousef
University of Minnesota [Twin Cities] [UMN]
Department of Computer Science and Engineering [Minneapolis]
Institut d'Informatique et de Mathématiques Appliquées de Grenoble [IMAG]
University of Minnesota [Twin Cities] [UMN]
Department of Computer Science and Engineering [Minneapolis]
Institut d'Informatique et de Mathématiques Appliquées de Grenoble [IMAG]
HÉNON, Pascal
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
SAAD, Yousef
University of Minnesota [Twin Cities] [UMN]
Department of Computer Science and Engineering [Minneapolis]
Institut d'Informatique et de Mathématiques Appliquées de Grenoble [IMAG]
< Réduire
University of Minnesota [Twin Cities] [UMN]
Department of Computer Science and Engineering [Minneapolis]
Institut d'Informatique et de Mathématiques Appliquées de Grenoble [IMAG]
Langue
en
Article de revue
Ce document a été publié dans
SIAM Journal on Scientific Computing. 2006, vol. 28, p. 2266--2293
Society for Industrial and Applied Mathematics
Résumé en anglais
PHIDAL (parallel hierarchical interface decomposition algorithm) is a parallel incomplete factorization method which exploits a hierarchical interface decomposition of the adjacency graph of the coefficient matrix. The ...Lire la suite >
PHIDAL (parallel hierarchical interface decomposition algorithm) is a parallel incomplete factorization method which exploits a hierarchical interface decomposition of the adjacency graph of the coefficient matrix. The idea of the decomposition is similar to that of the well-known wirebasket techniques used in domain decomposition. However, the method is devised for general, irregularly structured, sparse linear systems. This paper describes a few algorithms for obtaining good quality hierarchical graph decompositions and discusses the parallel implementation of the factorization procedure. Numerical experiments are reported to illustrate the scalability of the algorithm and its effectiveness as a general purpose parallel linear system solver.< Réduire
Mots clés en anglais
parallel incomplete LU factorization
ILU
sparse Gaussian elimination
wirebasket decomposition
interface decomposition
preconditioning
ILU with threshold
iterative methods
sparse linear systems
Origine
Importé de halUnités de recherche