Distributed computing with advice: information sensitivity of graph coloring
GAVOILLE, Cyril
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
ILCINKAS, David
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Voir plus >
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
GAVOILLE, Cyril
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
ILCINKAS, David
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
< Réduire
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Langue
en
Article de revue
Ce document a été publié dans
Distributed Computing. 2009-03, vol. 21, n° 6, p. 395-403
Springer Verlag
Résumé en anglais
We study the problem of the amount of information (advice) about a graph that must be given to its nodes in order to achieve fast distributed computations. The required size of the advice enables to measure the information ...Lire la suite >
We study the problem of the amount of information (advice) about a graph that must be given to its nodes in order to achieve fast distributed computations. The required size of the advice enables to measure the information sensitivity of a network problem. A problem is information sensitive if little advice is enough to solve the problem rapidly (i.e., much faster than in the absence of any advice), whereas it is information insensitive if it requires giving a lot of information to the nodes in order to ensure fast computation of the solution. In this paper, we study the information sensitivity of distributed graph coloring.< Réduire
Mots clés en anglais
network algorithm
graph coloring
distributed computing
Project ANR
Algorithm Design and Analysis for Implicitly and Incompletely Defined Interaction Networks - ANR-07-BLAN-0322
Origine
Importé de halUnités de recherche