Improvement of the Efficiency of Genetic Algorithms for Scalable Parallel Graph Partitioning in a Multi-Level Framework
CHEVALIER, Cédric
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
PELLEGRINI, François
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
CHEVALIER, Cédric
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
PELLEGRINI, François
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
< Réduire
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithms and high performance computing for grand challenge applications [SCALAPPLIX]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Euro-Par 2006 Parallel Processing, Euro-Par 2006 Parallel Processing, Euro-Par, 2006-08-30, Dresden. 2006-11-01, vol. 4128, p. 243-252
Springer
Résumé en anglais
Parallel graph partitioning is a difficult issue, because the best sequential graph partitioning methods known to date are based on iterative local optimization algorithms that do not parallelize nor scale well. On the ...Lire la suite >
Parallel graph partitioning is a difficult issue, because the best sequential graph partitioning methods known to date are based on iterative local optimization algorithms that do not parallelize nor scale well. On the other hand, evolutionary algorithms are highly parallel and scalable, but converge very slowly as problem size increases. This paper presents methods that can be used to reduce problem space in a dramatic way when using graph partitioning techniques in a multi-level framework, thus enabling the use of evolutionary algorithms as possible candidates, among others, for the realization of efficient scalable parallel graph partitioning tools. Results obtained on the recursive bipartitioning problem with a multi-threaded genetic algorithm are presented, which show that this approach outperforms existing state-of-the-art parallel partitioners.< Réduire
Project ANR
SOLveurs et SimulaTIons en Calculs Extrême - ANR-06-CIS6-0010
Origine
Importé de halUnités de recherche