The Cost of Monotonicity in Distributed Graph Searching
ILCINKAS, David
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
NISSE, Nicolas
Algorithms, simulation, combinatorics and optimization for telecommunications [MASCOTTE]
Algorithms, simulation, combinatorics and optimization for telecommunications [MASCOTTE]
ILCINKAS, David
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
NISSE, Nicolas
Algorithms, simulation, combinatorics and optimization for telecommunications [MASCOTTE]
< Leer menos
Algorithms, simulation, combinatorics and optimization for telecommunications [MASCOTTE]
Idioma
en
Article de revue
Este ítem está publicado en
Distributed Computing. 2009, vol. 22, n° 2, p. 117-127
Springer Verlag
Resumen en inglés
Blin et al. (TCS 2008) proposed a distributed protocol enabling the smallest possible number of searchers to clear any unknown graph in a decentralized manner. However, the strategy that is actually performed lacks of an ...Leer más >
Blin et al. (TCS 2008) proposed a distributed protocol enabling the smallest possible number of searchers to clear any unknown graph in a decentralized manner. However, the strategy that is actually performed lacks of an important property, namely the monotonicity. This paper deals with the smallest number of searchers that are necessary and sufficient to monotonously clear any unknown graph in a decentralized manner. The clearing of the graph is required to be connected, i.e., the clear part of the graph must remain permanently connected, and monotone, i.e., the clear part of the graph only grows. We prove that a distributed protocol clearing any unknown $n$-node graph in a monotone connected way, in a decentralized setting, can achieve but cannot beat competitive ratio of $\Theta(\frac{n}{\log n})$, compared with the centralized minimum number of searchers. Moreover, our lower bound holds even in a synchronous setting, while our constructive upper bound holds even in an asynchronous setting.< Leer menos
Palabras clave en inglés
Graph searching
Mobile agent
Monotonicity
Competitive ratio
Proyecto ANR
Algorithm Design and Analysis for Implicitly and Incompletely Defined Interaction Networks - ANR-07-BLAN-0322
Orígen
Importado de HalCentros de investigación