Connections between Theta-Graphs, Delaunay Triangulations, and Orthogonal Surfaces
BONICHON, Nicolas
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
GAVOILLE, Cyril
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Institut universitaire de France [IUF]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Institut universitaire de France [IUF]
HANUSSE, Nicolas
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Voir plus >
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
BONICHON, Nicolas
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
GAVOILLE, Cyril
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Institut universitaire de France [IUF]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Institut universitaire de France [IUF]
HANUSSE, Nicolas
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
ILCINKAS, David
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Réduire
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Proceedings of the 36th International Workshop on Graph Theoretic Concepts in Computer Science, Proceedings of the 36th International Workshop on Graph Theoretic Concepts in Computer Science, WG 2010, 2010-06. 2010, vol. 6410, p. 266--278
Springer Berlin / Heidelberg
Résumé en anglais
$\Theta_k$-graphs are geometric graphs that appear in the context of graph navigation. The shortest-path metric of these graphs is known to approximate the Euclidean complete graph up to a factor depending on the cone ...Lire la suite >
$\Theta_k$-graphs are geometric graphs that appear in the context of graph navigation. The shortest-path metric of these graphs is known to approximate the Euclidean complete graph up to a factor depending on the cone number $k$ and the dimension of the space. TD-Delaunay graphs, a.k.a.~triangular-distance Delaunay triangulations, introduced by Chew, have been shown to be plane $2$-spanners of the 2D Euclidean complete graph, i.e., the distance in the TD-Delaunay graph between any two points is no more than twice the distance in the plane. Orthogonal surfaces are geometric objects defined from independent sets of points of the Euclidean space. Orthogonal surfaces are well studied in combinatorics (orders, integer programming) and in algebra. From orthogonal surfaces, geometric graphs, called geodesic embeddings can be built. In this paper, we introduce a specific subgraph of the $\TG$-graph defined in the 2D Euclidean space, namely the $\DTG$-graph, composed of the even-cone edges of the $\TG$-graph. Our main contribution is to show that these graphs are exactly the TD-Delaunay graphs, and are strongly connected to the geodesic embeddings of orthogonal surfaces of coplanar points in the 3D Euclidean space. Using these new bridges between these three fields, we establish: \begin{itemize} \item Every $\TG$-graph is the union of two spanning TD-Delaunay graphs. In particular, $\TG$-graphs are $2$-spanners of the Euclidean graph, and the bound of~$2$ on the stretch factor is the best possible. It was not known that $\Theta_6$-graphs are $t$-spanners for some constant $t$, and $\Theta_7$-graphs were only known to be $t$-spanners for $t \approx 7.562$. \item Every plane triangulation is TD-Delaunay realizable, i.e., every combinatorial plane graph for which all its interior faces are triangles is the TD-Delaunay graph of some point set in the plane. Such realizability property does not hold for classical Delaunay triangulations. \end{itemize}< Réduire
Mots clés en anglais
Delaunay triangulation
Theta-graph
Orthogonal surface
Spanner
Realizability
Project ANR
Algorithm Design and Analysis for Implicitly and Incompletely Defined Interaction Networks - ANR-07-BLAN-0322
Origine
Importé de halUnités de recherche