The system will be going down for regular maintenance. Please save your work and logout.
Polyterpenes by ring opening metathesis polymerization of caryophyllene and humulene
GRAU, Etienne
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
GRAU, Etienne
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
< Reduce
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
Language
en
Article de revue
This item was published in
Green Chemistry. 2013, vol. 15, n° 5, p. 1112-1115
Royal Society of Chemistry
English Abstract
Ring opening metathesis polymerization of the natural sesquiterpenes caryophyllene and humulene, optionally complemented by exhaustive post-polymerization hydrogenation, yields non-crosslinked linear polymers with unprecedented ...Read more >
Ring opening metathesis polymerization of the natural sesquiterpenes caryophyllene and humulene, optionally complemented by exhaustive post-polymerization hydrogenation, yields non-crosslinked linear polymers with unprecedented microstructures reflecting the specific scaffolds of the feedstocks and with low glass transition temperatures in the range from -15 to -50 degrees C.Read less <
English Keywords
ROMP
RENEWABLE RESOURCES
CHEMISTRY
CATALYSTS
Origin
Hal imported