Comparative Study of Band-Power Extraction Techniques for Motor Imagery Classification
LOTTE, Fabien
Visualization and manipulation of complex data on wireless mobile devices [IPARLA]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Brain-Computer Interface Laboratory - Singapore [BCI]
Visualization and manipulation of complex data on wireless mobile devices [IPARLA]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Brain-Computer Interface Laboratory - Singapore [BCI]
LOTTE, Fabien
Visualization and manipulation of complex data on wireless mobile devices [IPARLA]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Brain-Computer Interface Laboratory - Singapore [BCI]
< Réduire
Visualization and manipulation of complex data on wireless mobile devices [IPARLA]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Brain-Computer Interface Laboratory - Singapore [BCI]
Langue
en
Communication dans un congrès
Ce document a été publié dans
IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (SSCI'2011 CCMB), IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (SSCI'2011 CCMB), IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (SSCI'2011 CCMB), 2011-04-11, Paris. 2011-04-11p. 1-6
IEEE
Résumé en anglais
We review different techniques for extracting the power information contained in frequency bands in the context of electroencephalography (EEG) based Brain-Computer Interfaces (BCI). In this domain it is common to apply ...Lire la suite >
We review different techniques for extracting the power information contained in frequency bands in the context of electroencephalography (EEG) based Brain-Computer Interfaces (BCI). In this domain it is common to apply only one algorithm for extracting the power information. However previous work and our current study confirm that one may indeed expect varying degrees of success by choosing inadequate algorithms for the power extraction. Our results suggest that on average one algorithm seems superior for extracting the power information for Motor Imagery tasks : the application of a Morlet wavelet on the raw EEG signals, with the time-frequency resolution tradeoff selected by cross-validation.< Réduire
Origine
Importé de halUnités de recherche