High-Order Optimal Edge Elements for Pyramids, Prisms and Hexahedra
DURUFLÉ, Marc
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
DURUFLÉ, Marc
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Computational Physics. 2013-01, vol. 232, n° 1, p. 189-213
Elsevier
Resumen en inglés
Edge elements are a popular method to solve Maxwell's equations especially in time-harmonic domain. However, when non-affine elements are considered, elements of the Nedelec's first family are not providing an optimal rate ...Leer más >
Edge elements are a popular method to solve Maxwell's equations especially in time-harmonic domain. However, when non-affine elements are considered, elements of the Nedelec's first family are not providing an optimal rate of the convergence of the numerical solution toward the solution of the exact problem in H(curl)-norm. We propose new finite element spaces for pyramids, prisms, and hexahedra in order to recover the optimal convergence. In the particular case of pyramids, a comparison with other existing elements found in the literature is performed. Numerical results show the good behaviour of these new finite elements.< Leer menos
Palabras clave en inglés
Edge elements
High-order finite element
Pyramids
Maxwell's equations
Orígen
Importado de HalCentros de investigación