Composing multiple StarPU applications over heterogeneous machines: a supervised approach
HUGO, Andra-Ecaterina
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
GUERMOUCHE, Abdou
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
NAMYST, Raymond
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Voir plus >
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
HUGO, Andra-Ecaterina
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
GUERMOUCHE, Abdou
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
NAMYST, Raymond
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
WACRENIER, Pierre-André
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Réduire
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Third International Workshop on Accelerators and Hybrid Exascale Systems, 2013-05-20, Boston. 2013-05-20
Résumé en anglais
Enabling HPC applications to perform efficiently when invoking multiple parallel libraries simultaneously is a great challenge. Even if a single runtime system is used underneath, scheduling tasks or threads coming from ...Lire la suite >
Enabling HPC applications to perform efficiently when invoking multiple parallel libraries simultaneously is a great challenge. Even if a single runtime system is used underneath, scheduling tasks or threads coming from different libraries over the same set of hardware resources introduces many issues, such as resource oversubscription, undesirable cache flushes or memory bus contention. This paper presents an extension of StarPU, a runtime system specifically designed for heterogeneous architectures, that allows multiple parallel codes to run concurrently with minimal interference. Such parallel codes run within scheduling contexts that provide confined execution environments which can be used to partition computing resources. Scheduling contexts can be dynamically resized to optimize the allocation of computing resources among concurrently running libraries. We introduce a hypervisor that automatically expands or shrinks contexts using feedback from the runtime system (e.g. resource utilization). We demonstrate the relevance of our approach using benchmarks invoking multiple high performance linear algebra kernels simultaneously on top of heterogeneous multicore machines. We show that our mechanism can dramatically improve the overall application run time (-34%), most notably by reducing the average cache miss ratio (-50%).< Réduire
Origine
Importé de halUnités de recherche