Impact of Singly Occupied Molecular Orbital energy on the n-doping efficiency of benzimidazole-derivatives
Language
en
Article de revue
This item was published in
ACS Applied Materials & Interfaces. 2019, vol. 11, n° 41, p. 37981-37990
Washington, D.C. : American Chemical Society
English Abstract
We investigated the impact of Singly Occupied Molecular Orbital (SOMO) energy on the n-doping efficiency of benzimidazole-derivatives. By designing and synthesizing a series of new air-stable benzimidazole-based dopants ...Read more >
We investigated the impact of Singly Occupied Molecular Orbital (SOMO) energy on the n-doping efficiency of benzimidazole-derivatives. By designing and synthesizing a series of new air-stable benzimidazole-based dopants with different SOMO energy levels, we demonstrated that an increase of the dopant SOMO energy by only ~0.3 eV enhances the electrical conductivity of a benchmark electron-transporting naphthalenediimide-bithiophene polymer by more than one order of magnitude. By combining electrical, X-ray diffraction, and electron paramagnetic resonance measurements with density functional theory calculations and analytical transport simulations, we quantitatively characterized the conductivity , Seebeck coefficient, spin density, crystallinity of the doped polymer as a function of the dopant SOMO energy. Our findings strongly indicate that charge and energy transport are dominated by the (relative) position of the SOMO level, whereas morphological differences appear to play a lesser role. These results set molecular-design guidelines for next-generation n-type dopants.Read less <
Origin
Hal imported