Décompte dans une conjecture de Lang sur les corps de fonctions : cas des courbes
Language
fr
Document de travail - Pré-publication
English Abstract
Let $X$ be a genus $d$ curve with $d\geq 2$ defined over a global function field $K$ of characteristic $p>0$ with $p>2d+1$. Suppose $X$ non-isotrivial. Let $\Gamma$ be a sub-group of $J(K_s)$, where $J$ is the jacobian of ...Read more >
Let $X$ be a genus $d$ curve with $d\geq 2$ defined over a global function field $K$ of characteristic $p>0$ with $p>2d+1$. Suppose $X$ non-isotrivial. Let $\Gamma$ be a sub-group of $J(K_s)$, where $J$ is the jacobian of $X$ and $K_s$ is a separable closure of $K$, verifying $\Gamma/p \Gamma$ finite. Then one shows that $X\cap \Gamma$ has finite cardinal and one provides an explicit upper bound. This generalizes a result of Buium and Voloch.Read less <
Origin
Hal imported