A method for computing curved meshes via the linear elasticity analogy, application to fluid dynamics problems
ABGRALL, Remi
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
DOBRZYNSKI, Cécile
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
FROEHLY, Algiane
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
ABGRALL, Remi
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
DOBRZYNSKI, Cécile
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
FROEHLY, Algiane
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
< Reduce
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Language
en
Article de revue
This item was published in
International Journal for Numerical Methods in Fluids. 2014-07-12, vol. 76, n° 4, p. 246-266
Wiley
Origin
Hal imported