Observations on Gaussian upper bounds for Neumann heat kernels
Langue
en
Article de revue
Ce document a été publié dans
Bulletin of the Australian Mathematical Society. 2015, vol. 92, n° 3, p. 429-439
John Loxton University of Western Sydney|Australia
Résumé en anglais
Given a domain $\Omega$ of a complete Riemannian manifold $\mathcal{M}$ and define $\mathcal{A}$ to be the Laplacian with Neumann boundary condition on $\Omega$. We prove that, under appropriate conditions, the corresponding ...Lire la suite >
Given a domain $\Omega$ of a complete Riemannian manifold $\mathcal{M}$ and define $\mathcal{A}$ to be the Laplacian with Neumann boundary condition on $\Omega$. We prove that, under appropriate conditions, the corresponding heat kernel satisfies the Gaussian upper bound$$h(t,x,y)\leq \frac{C}{\left[V_\Omega(x,\sqrt{t})V_\Omega (y,\sqrt{t})\right]^{1/2}}\left( 1+\frac{d^2(x,y)}{4t}\right)^{\delta}e^{-\frac{d^2(x,y)}{4t}},\;\; t>0,\; x,y\in \Omega .$$Here $d$ is the geodesic distance on $\mathcal{M}$, $V_\Omega (x,r)$ is the Riemannian volume of $B(x,r)\cap \Omega$, where $B(x,r)$ is the geodesic ball of center $x$ and radius $r$, and $\delta$ is a constant related to the doubling property of $\Omega$.As a consequence we obtain analyticity of the semigroup $e^{-t {\mathcal A}}$ on $L^p(\Omega)$ for all $p \in [1, \infty)$ as well as a spectral multiplier result.< Réduire
Mots clés en anglais
Neumann Laplacian
Gaussian bounds
Riemannian manifolds.
Heat kernels
Project ANR
Aux frontières de l'analyse Harmonique - ANR-12-BS01-0013
Origine
Importé de halUnités de recherche