Afficher la notice abrégée

hal.structure.identifierInstitut Élie Cartan de Lorraine [IECL]
dc.contributor.authorCHOULLI, Mourad
hal.structure.identifierInstitut Élie Cartan de Lorraine [IECL]
dc.contributor.authorKAYSER, Laurent
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMAATI OUHABAZ, El
dc.date.accessioned2024-04-04T03:18:55Z
dc.date.available2024-04-04T03:18:55Z
dc.date.issued2015
dc.identifier.issn0004-9727
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194455
dc.description.abstractEnGiven a domain $\Omega$ of a complete Riemannian manifold $\mathcal{M}$ and define $\mathcal{A}$ to be the Laplacian with Neumann boundary condition on $\Omega$. We prove that, under appropriate conditions, the corresponding heat kernel satisfies the Gaussian upper bound$$h(t,x,y)\leq \frac{C}{\left[V_\Omega(x,\sqrt{t})V_\Omega (y,\sqrt{t})\right]^{1/2}}\left( 1+\frac{d^2(x,y)}{4t}\right)^{\delta}e^{-\frac{d^2(x,y)}{4t}},\;\; t>0,\; x,y\in \Omega .$$Here $d$ is the geodesic distance on $\mathcal{M}$, $V_\Omega (x,r)$ is the Riemannian volume of $B(x,r)\cap \Omega$, where $B(x,r)$ is the geodesic ball of center $x$ and radius $r$, and $\delta$ is a constant related to the doubling property of $\Omega$.As a consequence we obtain analyticity of the semigroup $e^{-t {\mathcal A}}$ on $L^p(\Omega)$ for all $p \in [1, \infty)$ as well as a spectral multiplier result.
dc.description.sponsorshipAux frontières de l'analyse Harmonique - ANR-12-BS01-0013
dc.language.isoen
dc.publisherJohn Loxton University of Western Sydney|Australia
dc.subject.enNeumann Laplacian
dc.subject.enGaussian bounds
dc.subject.enRiemannian manifolds.
dc.subject.enHeat kernels
dc.title.enObservations on Gaussian upper bounds for Neumann heat kernels
dc.typeArticle de revue
dc.identifier.doi10.1017/S0004972715000611
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Mathématiques générales [math.GM]
dc.identifier.arxiv1502.06740
bordeaux.journalBulletin of the Australian Mathematical Society
bordeaux.page429-439
bordeaux.volume92
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01119643
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01119643v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.date=2015&rft.volume=92&rft.issue=3&rft.spage=429-439&rft.epage=429-439&rft.eissn=0004-9727&rft.issn=0004-9727&rft.au=CHOULLI,%20Mourad&KAYSER,%20Laurent&MAATI%20OUHABAZ,%20El&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée