A bilayer model of human atria: mathematical background, construction, and assessment
LABARTHE, Simon
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
BAYER, Jason
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
COUDIÈRE, Yves
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
IHU-LIRYC
Leer más >
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
IHU-LIRYC
LABARTHE, Simon
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
BAYER, Jason
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
COUDIÈRE, Yves
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
IHU-LIRYC
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
IHU-LIRYC
HENRY, Jacques
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
VIGMOND, Edward
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
< Leer menos
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Idioma
en
Article de revue
Este ítem está publicado en
EP-Europace. 2014-12, vol. 16, n° suppl 4, p. 29
Oxford University Press (OUP)
Resumen en inglés
(1) Aims: Atrial numerical modelling has generally represented the organ as either a surface or tissue with thickness. While surface models have significant computational advantages over tissue models, they cannot fully ...Leer más >
(1) Aims: Atrial numerical modelling has generally represented the organ as either a surface or tissue with thickness. While surface models have significant computational advantages over tissue models, they cannot fully capture propagation patterns seen in vivo, such as dissociation of activity between endo-and epicardium. We introduce an intermediate representation, a bilayer model of the human atria, which is capable of recreating recorded activation patterns. (2) Methods: We simultaneously solved two surface monodomain problems by formalizing an optimization method to set a coupling coefficient between them. Two different asymptotically equivalent numerical implementations of the model are presented. We then built a geometrically and electrophysiologically detailed model of the human atria based on CT data, including two layers of fibre directions, major muscle bundles, and discrete atrial coupling. We adjusted parameters to recreate clinically measured activation times. Activation was compared to a monolayer model. (3) Results: Activation was fit to the physiological range measured over the entire atria. The crista terminalis and pectinate muscles were important for local right atrial activation, but did not significantly affect total activation time. Propagation in the bilayer model was similar to that of a monolayer, but with noticeable difference, due to three-dimensional propagationwhere fibre direction changed abruptly across the wall, resulting in a slight dissociation of activity. (4) Conclusion: Atrial structure plays the dominant role in determining activation. A bilayer model is able to take into account transmural heterogeneities, while maintaining thelow computational load associated with surface models.< Leer menos
Palabras clave en inglés
surface model
atrial arrhythmia
two-layer model
human atria
atrial physiology
Proyecto europeo
The European Network for Translational Research in Atrial Fibrillation
Proyecto ANR
L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004
Modèles numériques haute résolution de l'électrophysiologie cardiaque - ANR-13-MONU-0004
Modèles numériques haute résolution de l'électrophysiologie cardiaque - ANR-13-MONU-0004
Orígen
Importado de HalCentros de investigación