A second-order Cartesian method for the simulation of electropermeabilization cell models
LEGUÈBE, Michaël
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
POIGNARD, Clair
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
WEYNANS, Lisl
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
LEGUÈBE, Michaël
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
POIGNARD, Clair
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
WEYNANS, Lisl
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
< Reduce
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Language
en
Article de revue
This item was published in
Journal of Computational Physics. 2015-07, vol. 292, p. 26
Elsevier
English Abstract
In this paper, we present a new finite differences method to simulate electropermeabilization models, like the model of Neu and Krassowska or the recent model of Kavian et al. These models are based on the evolution of the ...Read more >
In this paper, we present a new finite differences method to simulate electropermeabilization models, like the model of Neu and Krassowska or the recent model of Kavian et al. These models are based on the evolution of the electric potential in a cell embedded in a conducting medium. The main feature lies in the transmission of the voltage potential across the cell membrane: the jump of the potential is proportional to the normal flux thanks to the well-known Kirchoff law. An adapted scheme is thus necessary to accurately simulate the voltage potential in the whole cell, notably at the membrane separating the cell from the outer medium. We present a second-order finite differences scheme in the spirit of the method introduced by Cisternino and Weynans for elliptic problems with immersed interfaces. This is a Cartesian grid method based on the accurate discretization of the fluxes at the interface, through the use of additional interface unknowns. The main novelty of our present work lies in the fact that the jump of the potential is proportional to the flux, and therefore is not explicitly known. The original use of interface unknowns makes it possible to discretize the transmission conditions with enough accuracy to obtain a second-order spatial convergence. We prove the second-order spatial convergence in the stationary linear one-dimensional case, and the first-order temporal convergence for the dynamical non-linear model in one dimension. We then perform numerical experiments in two dimensions that corroborate these results.Read less <
English Keywords
Finite differences on Cartesian grids
Interface transmission conditions
Truncation error
Cell modeling
Origin
Hal imported