Instability of ground states for a quasilinear Schrödinger equation
COLIN, Mathieu
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
COLIN, Mathieu
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Article de revue
Este ítem está publicado en
Differential and integral equations. 2014, vol. 27, n° 7,8, p. 613-624
Khayyam Publishing
Resumen en inglés
We study a class of one parameter (denoted by κ) family of quasi-linear Schrödinger equations arising in the theory of superfluid film in plasma physics. Using variational techniques, we prove the orbital instability of ...Leer más >
We study a class of one parameter (denoted by κ) family of quasi-linear Schrödinger equations arising in the theory of superfluid film in plasma physics. Using variational techniques, we prove the orbital instability of solitary waves for small values of the parameter κ, which gives an answer to a question raised in [9].< Leer menos
Palabras clave en inglés
schrodinger
Orígen
Importado de HalCentros de investigación