Instability of ground states for a quasilinear Schrödinger equation
COLIN, Mathieu
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
COLIN, Mathieu
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Differential and integral equations. 2014, vol. 27, n° 7,8, p. 613-624
Khayyam Publishing
Résumé en anglais
We study a class of one parameter (denoted by κ) family of quasi-linear Schrödinger equations arising in the theory of superfluid film in plasma physics. Using variational techniques, we prove the orbital instability of ...Lire la suite >
We study a class of one parameter (denoted by κ) family of quasi-linear Schrödinger equations arising in the theory of superfluid film in plasma physics. Using variational techniques, we prove the orbital instability of solitary waves for small values of the parameter κ, which gives an answer to a question raised in [9].< Réduire
Mots clés en anglais
schrodinger
Origine
Importé de halUnités de recherche