THE CRAMER-WOLD THEOREM ON QUADRATIC SURFACES AND HEISENBERG UNIQUENESS PAIRS
Langue
en
Article de revue
Ce document a été publié dans
Journal de l'Institut de Mathématiques de Jussieu. 2020, vol. 19, p. 117-135
Résumé en anglais
Two measurable sets S, Λ ⊆ R d form a Heisenberg uniqueness pair, if every bounded measure µ with support in S whose Fourier transform vanishes on Λ must be zero. We show that a quadratic hypersurface and the union of two ...Lire la suite >
Two measurable sets S, Λ ⊆ R d form a Heisenberg uniqueness pair, if every bounded measure µ with support in S whose Fourier transform vanishes on Λ must be zero. We show that a quadratic hypersurface and the union of two hyperplanes in general position form a Heisenberg uniqueness pair in R d. As a corollary we obtain a new, surprising version of the classical Cramér-Wold theorem: a bounded measure supported on a quadratic hypersurface is uniquely determined by its projections onto two generic hyperplanes (whereas an arbitrary measure requires the knowledge of a dense set of projections). We also give an application to the unique continuation of eigenfunctions of second-order PDEs with constant coefficients .< Réduire
Mots clés en anglais
Heisenberg Uniqueness
Cramer-Wold theorem
Unique continuation
Project ANR
Géométrie des mesures convexes et discrètes - ANR-11-BS01-0007
Analyse Variationnelle en Tomographies photoacoustique, thermoacoustique et ultrasonore - ANR-12-BS01-0001
Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
Analyse Variationnelle en Tomographies photoacoustique, thermoacoustique et ultrasonore - ANR-12-BS01-0001
Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
Origine
Importé de halUnités de recherche