On the Cauchy problem for microlocally symmetrizable hyperbolic systems with log-Lipschitz coefficients
Idioma
en
Article de revue
Este ítem está publicado en
Indiana University Mathematics Journal. 2020, vol. 69, n° 3
Indiana University Mathematics Journal
Resumen en inglés
The present paper concerns the well-posedness of the Cauchy problem for microlocally symmetrizable hyperbolic systems whose coefficients and symmetrizer are log-Lipschitz continuous, uniformly in time and space variables. ...Leer más >
The present paper concerns the well-posedness of the Cauchy problem for microlocally symmetrizable hyperbolic systems whose coefficients and symmetrizer are log-Lipschitz continuous, uniformly in time and space variables. For the global in space problem we establish energy estimates with finite loss of derivatives, which is linearly increasing in time. This implies well-posedness in H ∞ , if the coefficients enjoy enough smoothness in x. From this result, by standard arguments (i.e. extension and convexification) we deduce also local existence and uniqueness. A huge part of the analysis is devoted to give an appropriate sense to the Cauchy problem, which is not evident a priori in our setting, due to the very low regularity of coefficients and solutions. 2010 Mathematics Subject Classification: 35L45 (primary); 35B45, 35B65 (secondary).< Leer menos
Palabras clave en inglés
hyperbolic systems
microlocal symmetrizability
log-Lipschitz regularity
loss of derivatives
global and local Cauchy problem
well-posedness
Proyecto ANR
Community of mathematics and fundamental computer science in Lyon - ANR-10-LABX-0070
Bords, oscillations et couches limites dans les systèmes différentiels - ANR-16-CE40-0027
Bords, oscillations et couches limites dans les systèmes différentiels - ANR-16-CE40-0027
Orígen
Importado de HalCentros de investigación