Afficher la notice abrégée

hal.structure.identifierDipartimento di Matematica
dc.contributor.authorCOLOMBINI, Ferruccio
hal.structure.identifierDipartimento di Matematica e Geoscienze [Trieste]
dc.contributor.authorSANTO, Daniele
hal.structure.identifierÉquations aux dérivées partielles, analyse [EDPA]
dc.contributor.authorFANELLI, Francesco
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMÉTIVIER, Guy
dc.date.accessioned2024-04-04T03:13:27Z
dc.date.available2024-04-04T03:13:27Z
dc.date.issued2020
dc.identifier.issn0022-2518
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193950
dc.description.abstractEnThe present paper concerns the well-posedness of the Cauchy problem for microlocally symmetrizable hyperbolic systems whose coefficients and symmetrizer are log-Lipschitz continuous, uniformly in time and space variables. For the global in space problem we establish energy estimates with finite loss of derivatives, which is linearly increasing in time. This implies well-posedness in H ∞ , if the coefficients enjoy enough smoothness in x. From this result, by standard arguments (i.e. extension and convexification) we deduce also local existence and uniqueness. A huge part of the analysis is devoted to give an appropriate sense to the Cauchy problem, which is not evident a priori in our setting, due to the very low regularity of coefficients and solutions. 2010 Mathematics Subject Classification: 35L45 (primary); 35B45, 35B65 (secondary).
dc.description.sponsorshipCommunity of mathematics and fundamental computer science in Lyon - ANR-10-LABX-0070
dc.description.sponsorshipBords, oscillations et couches limites dans les systèmes différentiels - ANR-16-CE40-0027
dc.language.isoen
dc.publisherIndiana University Mathematics Journal
dc.subject.enhyperbolic systems
dc.subject.enmicrolocal symmetrizability
dc.subject.enlog-Lipschitz regularity
dc.subject.enloss of derivatives
dc.subject.englobal and local Cauchy problem
dc.subject.enwell-posedness
dc.title.enOn the Cauchy problem for microlocally symmetrizable hyperbolic systems with log-Lipschitz coefficients
dc.typeArticle de revue
dc.identifier.doi10.1512/iumj.2020.69.7963
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalIndiana University Mathematics Journal
bordeaux.volume69
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01380371
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01380371v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Indiana%20University%20Mathematics%20Journal&rft.date=2020&rft.volume=69&rft.issue=3&rft.eissn=0022-2518&rft.issn=0022-2518&rft.au=COLOMBINI,%20Ferruccio&SANTO,%20Daniele&FANELLI,%20Francesco&M%C3%89TIVIER,%20Guy&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée