On the Cauchy problem for microlocally symmetrizable hyperbolic systems with log-Lipschitz coefficients
hal.structure.identifier | Dipartimento di Matematica | |
dc.contributor.author | COLOMBINI, Ferruccio | |
hal.structure.identifier | Dipartimento di Matematica e Geoscienze [Trieste] | |
dc.contributor.author | SANTO, Daniele | |
hal.structure.identifier | Équations aux dérivées partielles, analyse [EDPA] | |
dc.contributor.author | FANELLI, Francesco | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MÉTIVIER, Guy | |
dc.date.accessioned | 2024-04-04T03:13:27Z | |
dc.date.available | 2024-04-04T03:13:27Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0022-2518 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193950 | |
dc.description.abstractEn | The present paper concerns the well-posedness of the Cauchy problem for microlocally symmetrizable hyperbolic systems whose coefficients and symmetrizer are log-Lipschitz continuous, uniformly in time and space variables. For the global in space problem we establish energy estimates with finite loss of derivatives, which is linearly increasing in time. This implies well-posedness in H ∞ , if the coefficients enjoy enough smoothness in x. From this result, by standard arguments (i.e. extension and convexification) we deduce also local existence and uniqueness. A huge part of the analysis is devoted to give an appropriate sense to the Cauchy problem, which is not evident a priori in our setting, due to the very low regularity of coefficients and solutions. 2010 Mathematics Subject Classification: 35L45 (primary); 35B45, 35B65 (secondary). | |
dc.description.sponsorship | Community of mathematics and fundamental computer science in Lyon - ANR-10-LABX-0070 | |
dc.description.sponsorship | Bords, oscillations et couches limites dans les systèmes différentiels - ANR-16-CE40-0027 | |
dc.language.iso | en | |
dc.publisher | Indiana University Mathematics Journal | |
dc.subject.en | hyperbolic systems | |
dc.subject.en | microlocal symmetrizability | |
dc.subject.en | log-Lipschitz regularity | |
dc.subject.en | loss of derivatives | |
dc.subject.en | global and local Cauchy problem | |
dc.subject.en | well-posedness | |
dc.title.en | On the Cauchy problem for microlocally symmetrizable hyperbolic systems with log-Lipschitz coefficients | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1512/iumj.2020.69.7963 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Indiana University Mathematics Journal | |
bordeaux.volume | 69 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 3 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01380371 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01380371v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Indiana%20University%20Mathematics%20Journal&rft.date=2020&rft.volume=69&rft.issue=3&rft.eissn=0022-2518&rft.issn=0022-2518&rft.au=COLOMBINI,%20Ferruccio&SANTO,%20Daniele&FANELLI,%20Francesco&M%C3%89TIVIER,%20Guy&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |