EIGENVALUES FOR MAXWELL'S EQUATIONS WITH DISSIPATIVE BOUNDARY CONDITIONS
Langue
en
Article de revue
Ce document a été publié dans
Asymptotic Analysis. 2016-09, vol. 99, n° 1-2
IOS Press
Résumé en anglais
Let V (t) = e tG b , t ≥ 0, be the semigroup generated by Maxwell's equations in an exterior domain Ω ⊂ R 3 with dissipative boundary condition Etan − γ(x)(ν ∧ Btan) = 0, γ(x) > 0, ∀x ∈ Γ = ∂Ω. We prove that if γ(x) is ...Lire la suite >
Let V (t) = e tG b , t ≥ 0, be the semigroup generated by Maxwell's equations in an exterior domain Ω ⊂ R 3 with dissipative boundary condition Etan − γ(x)(ν ∧ Btan) = 0, γ(x) > 0, ∀x ∈ Γ = ∂Ω. We prove that if γ(x) is nowhere equal to 1, then for every 0 < 1 and every N ∈ N the eigenvalues of G b lie in the region Λ ∪ R N , where Λ = {z ∈ C : | Re z| ≤ C Im z| 1 2 + + 1), Re z < 0}, R N = {z ∈ C : | Im z| ≤ C N (| Re z| + 1) −N , Re z < 0}.< Réduire
Mots clés en anglais
Maxwell's equations
dissipative boundary conditions
asymptotically disappearing solutions
Project ANR
Opérateurs non-autoadjoints, analyse semiclassique et problèmes d'évolution - ANR-11-BS01-0019
Origine
Importé de halUnités de recherche